Add dataset card
Browse files
README.md
CHANGED
|
@@ -5,6 +5,8 @@ language:
|
|
| 5 |
- kor
|
| 6 |
license: cc-by-sa-4.0
|
| 7 |
multilinguality: monolingual
|
|
|
|
|
|
|
| 8 |
task_categories:
|
| 9 |
- text-classification
|
| 10 |
task_ids: []
|
|
@@ -45,6 +47,9 @@ this dataset is a processed and redistributed version of the KLUE-Ynat & KLUE-MR
|
|
| 45 |
| Domains | News, Written |
|
| 46 |
| Reference | https://huggingface.co/datasets/on-and-on/clustering_klue_mrc_ynat_title |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
## How to evaluate on this task
|
| 50 |
|
|
@@ -53,15 +58,15 @@ You can evaluate an embedding model on this dataset using the following code:
|
|
| 53 |
```python
|
| 54 |
import mteb
|
| 55 |
|
| 56 |
-
task = mteb.
|
| 57 |
-
evaluator = mteb.MTEB(task)
|
| 58 |
|
| 59 |
model = mteb.get_model(YOUR_MODEL)
|
| 60 |
evaluator.run(model)
|
| 61 |
```
|
| 62 |
|
| 63 |
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
|
| 64 |
-
To learn more about how to run models on `mteb` task check out the [GitHub
|
| 65 |
|
| 66 |
## Citation
|
| 67 |
|
|
@@ -90,7 +95,7 @@ If you use this dataset, please cite the dataset as well as [mteb](https://githu
|
|
| 90 |
}
|
| 91 |
|
| 92 |
@article{muennighoff2022mteb,
|
| 93 |
-
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne,
|
| 94 |
title = {MTEB: Massive Text Embedding Benchmark},
|
| 95 |
publisher = {arXiv},
|
| 96 |
journal={arXiv preprint arXiv:2210.07316},
|
|
@@ -117,31 +122,36 @@ desc_stats = task.metadata.descriptive_stats
|
|
| 117 |
```json
|
| 118 |
{
|
| 119 |
"test": {
|
| 120 |
-
"num_samples":
|
| 121 |
-
"
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
"
|
| 129 |
-
"
|
| 130 |
-
|
| 131 |
-
"
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
"
|
| 135 |
-
"
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
"
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
"
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
}
|
| 146 |
}
|
| 147 |
}
|
|
|
|
| 5 |
- kor
|
| 6 |
license: cc-by-sa-4.0
|
| 7 |
multilinguality: monolingual
|
| 8 |
+
source_datasets:
|
| 9 |
+
- on-and-on/clustering_klue_mrc_ynat_title
|
| 10 |
task_categories:
|
| 11 |
- text-classification
|
| 12 |
task_ids: []
|
|
|
|
| 47 |
| Domains | News, Written |
|
| 48 |
| Reference | https://huggingface.co/datasets/on-and-on/clustering_klue_mrc_ynat_title |
|
| 49 |
|
| 50 |
+
Source datasets:
|
| 51 |
+
- [on-and-on/clustering_klue_mrc_ynat_title](https://huggingface.co/datasets/on-and-on/clustering_klue_mrc_ynat_title)
|
| 52 |
+
|
| 53 |
|
| 54 |
## How to evaluate on this task
|
| 55 |
|
|
|
|
| 58 |
```python
|
| 59 |
import mteb
|
| 60 |
|
| 61 |
+
task = mteb.get_task("KlueYnatMrcCategoryClustering")
|
| 62 |
+
evaluator = mteb.MTEB([task])
|
| 63 |
|
| 64 |
model = mteb.get_model(YOUR_MODEL)
|
| 65 |
evaluator.run(model)
|
| 66 |
```
|
| 67 |
|
| 68 |
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
|
| 69 |
+
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
|
| 70 |
|
| 71 |
## Citation
|
| 72 |
|
|
|
|
| 95 |
}
|
| 96 |
|
| 97 |
@article{muennighoff2022mteb,
|
| 98 |
+
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
|
| 99 |
title = {MTEB: Massive Text Embedding Benchmark},
|
| 100 |
publisher = {arXiv},
|
| 101 |
journal={arXiv preprint arXiv:2210.07316},
|
|
|
|
| 122 |
```json
|
| 123 |
{
|
| 124 |
"test": {
|
| 125 |
+
"num_samples": 904,
|
| 126 |
+
"text_statistics": {
|
| 127 |
+
"total_text_length": 30703,
|
| 128 |
+
"min_text_length": 21,
|
| 129 |
+
"average_text_length": 33.96349557522124,
|
| 130 |
+
"max_text_length": 89,
|
| 131 |
+
"unique_texts": 904
|
| 132 |
+
},
|
| 133 |
+
"image_statistics": null,
|
| 134 |
+
"label_statistics": {
|
| 135 |
+
"min_labels_per_text": 1,
|
| 136 |
+
"average_label_per_text": 1.0,
|
| 137 |
+
"max_labels_per_text": 1,
|
| 138 |
+
"unique_labels": 5,
|
| 139 |
+
"labels": {
|
| 140 |
+
"3": {
|
| 141 |
+
"count": 173
|
| 142 |
+
},
|
| 143 |
+
"2": {
|
| 144 |
+
"count": 164
|
| 145 |
+
},
|
| 146 |
+
"1": {
|
| 147 |
+
"count": 99
|
| 148 |
+
},
|
| 149 |
+
"0": {
|
| 150 |
+
"count": 240
|
| 151 |
+
},
|
| 152 |
+
"5": {
|
| 153 |
+
"count": 228
|
| 154 |
+
}
|
| 155 |
}
|
| 156 |
}
|
| 157 |
}
|