import datasets _CITATION = '''@article{lawrie2023overview, title={Overview of the TREC 2022 NeuCLIR track}, author={Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene}, journal={arXiv preprint arXiv:2304.12367}, year={2023} }''' _EVAL_SPLIT = "test" _LANGUAGES = { "fas": ["fas-Arab"], "rus": ["rus-Cyrl"], "zho": ["zho-Hans"], } _DESCRIPTION = 'Dataset load script for NeuCLIR2023 downsampled for MTEB' _DATASET_URLS = { lang: f'mteb/NeuCLIR2022Retrieval_{lang}_top_250_only_w_correct-v2' for lang in _LANGUAGES } class MLDR(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=lang, description=f'NeuCLIR dataset in language {lang}.' ) for lang in _LANGUAGES ] + [ datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=f'corpus-{lang}', description=f'Corpus of NeuCLIR dataset in language {lang}.' ) for lang in _LANGUAGES ] + [ datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=f'queries-{lang}', description=f'Queries of NeuCLIR dataset in language {lang}.' ) for lang in _LANGUAGES ] def _info(self): name = self.config.name if name.startswith('corpus-'): features = datasets.Features({ '_id': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string'), }) elif name.startswith('queries-'): features = datasets.Features({ '_id': datasets.Value('string'), 'text': datasets.Value('string'), }) else: features = datasets.Features({ 'query-id': datasets.Value('string'), 'corpus-id': datasets.Value('string'), 'score': datasets.Value('int32'), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage='https://arxiv.org/abs/2304.12367', license=None, citation=_CITATION, ) def _split_generators(self, dl_manager): name = self.config.name lang = name.split('-')[-1] if '-' in name else name lang_repo = _DATASET_URLS[lang] if name.startswith('corpus-'): dataset = datasets.load_dataset(lang_repo, f"corpus") return [ datasets.SplitGenerator( name='corpus', gen_kwargs={ 'split': dataset['test'], }, ), ] elif name.startswith('queries-'): dataset = datasets.load_dataset(lang_repo, f"queries") return [ datasets.SplitGenerator( name='queries', gen_kwargs={ 'split': dataset['test'], }, ), ] else: dataset = datasets.load_dataset(lang_repo) return [ datasets.SplitGenerator( name=_EVAL_SPLIT, gen_kwargs={ 'split': dataset['test'], }, ), ] def _generate_examples(self, split): name = self.config.name if name.startswith('corpus-'): for idx, example in enumerate(split): yield idx, { '_id': example['_id'], 'text': example['text'], 'title': example['title'], } elif name.startswith('queries-'): for idx, example in enumerate(split): yield idx, { '_id': example['_id'], 'text': example['text'], } else: for idx, example in enumerate(split): yield idx, { 'query-id': example['query-id'], 'corpus-id': example['corpus-id'], 'score': example['score'], }