import os import pyarrow.parquet as pq import datasets import pandas as pd import numpy as np import io class WyvernEOConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(**kwargs) class WyvernEO(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ WyvernEOConfig(name="default", version=datasets.Version("1.0.0"), description="Wyvern EO imagery with masks") ] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description="Wyvern dataset at 2400m tiles with imagery and quality masks.", features=datasets.Features({ "tile_id": datasets.Value("string"), "scene_id": datasets.Value("string"), "start_datetime": datasets.Value("timestamp[us]"), "end_datetime": datasets.Value("timestamp[us]"), "image": datasets.Value("binary"), "data_mask": datasets.Value("binary"), "pixel_quality_mask": datasets.Value("binary"), "shape": [datasets.Value("int32")], }), supervised_keys=None, ) def _split_generators(self, dl_manager): # Define relative path inside the repo parquet_dir = "datasets_EO/Wyvern/grid_2400m" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"folder_path": parquet_dir}, ) ] def _generate_examples(self, folder_path): idx = 0 for fname in sorted(os.listdir(folder_path)): if fname.endswith(".parquet"): fpath = os.path.join(folder_path, fname) table = pq.read_table(fpath) df = table.to_pandas() for _, row in df.iterrows(): yield idx, { "tile_id": row["tile_id"], "scene_id": row["scene_id"], "start_datetime": row["start_datetime"], "end_datetime": row["end_datetime"], "image": row["image"], "data_mask": row["data_mask"], "pixel_quality_mask": row["pixel_quality_mask"], "shape": row["shape"], } idx += 1