Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 9,906 Bytes
20e83ec d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 a9fde41 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a a9fde41 f2d2d1a a9fde41 d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a a9fde41 f2d2d1a a9fde41 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 f2d2d1a d7cb1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
license: apache-2.0
task_categories:
- visual-question-answering
language:
- en
tags:
- Video
- Text
size_categories:
- 1K<n<10K
configs:
- config_name: full
data_files:
- split: test
path: "test*.parquet"
default: true
- config_name: debiased
data_files:
- split: test
path: "test_debiased.parquet"
- config_name: pruned
data_files:
- split: test
path: "test_pruned.parquet"
---
<!-- <div align="center"> -->
| Dataset | arXiv | Website | Code |
| :------ | :---- | :------ | :--- |
| **VSI-Bench** | <a href="https://arxiv.org/abs/2412.14171" target="_blank"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-thinking--in--space-red?logo=arxiv" height="20" /></a> | <a href="https://vision-x-nyu.github.io/thinking-in-space.github.io/" target="_blank"><img alt="Website" src="https://img.shields.io/badge/🌎_Website-thinking--in--space-blue.svg" height="20" /></a> | <a href="https://github.com/vision-x-nyu/thinking-in-space" target="_blank"><img alt="GitHub Code" src="https://img.shields.io/badge/Code-thinking--in--space-white?&logo=github&logoColor=white" /></a> |
| **VSI-Bench-Debiased** | <a href="https://arxiv.org/abs/2511.04655" target="_blank"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-test--set--stress--test-red?logo=arxiv" height="20" /></a> | <a href="https://vision-x-nyu.github.io/test-set-training/" target="_blank"><img alt="Website" src="https://img.shields.io/badge/🌎_Website-test--set--stress--test-blue.svg" height="20" /></a> | <a href="https://github.com/vision-x-nyu/test-set-training" target="_blank"><img alt="GitHub Code" src="https://img.shields.io/badge/Code-test--set--stress--test-white?&logo=github&logoColor=white" /></a> |
<!-- </div> -->
<br>
> [!IMPORTANT]
> ***[Nov. 7, 2025] UPDATE:** This Dataset has been updated to include a "Debiased" subset following the [TsT Pruning Methodology](https://vision-x-nyu.github.io/test-set-training/)*
<br>
# Visual-Spatial Intelligence Benchmark (VSI-Bench & VSI-Bench-Debiased)
This repository contains the visual spatial intelligence benchmark (VSI-Bench), introduced in [Thinking in Space: How Multimodal Large Language Models See, Remember and Recall Spaces](https://arxiv.org/abs/2412.14171), and its debiased counterpart **VSI-Bench-Debiased**, introduced in our follow-up work on systematic benchmark robustification [Benchmark Designers Should "Train on the Test Set" to Expose Exploitable Non-Visual Shortcuts](https://arxiv.org/abs/2511.04655).
## Overview
**VSI-Bench** evaluates visual-spatial intelligence of multimodal models through egocentric video understanding, comprising over 5,000 question-answer pairs from real-world indoor scenes.
**VSI-Bench-Debiased** is a robustified version that reduces non-visual shortcuts using our Test-set Stress-Test (TsT) and Iterative Bias Pruning (IBP) methodology. This version better isolates visual reasoning capabilities by systematically removing samples that can be solved without visual input.
### Description
VSI-Bench quantitatively evaluates the visual-spatial intelligence of MLLMs from egocentric video. VSI-Bench comprises over 5,000 question-answer pairs derived from 288 real videos. These videos are sourced from the validation sets of the public indoor 3D scene reconstruction datasets `ScanNet`, `ScanNet++`, and `ARKitScenes`, and represent diverse environments -- including residential spaces, professional settings (e.g., offices, labs), and industrial spaces (e.g., factories) and multiple geographic regions. By repurposing these existing 3D reconstruction and understanding datasets, VSI-Bench benefits from accurate object-level annotations, which are used in question generation and could support future studies exploring the connection between MLLMs and 3D reconstruction.
#### Fields
The dataset contains the following fields:
| Field Name | Description |
| :--------- | :---------- |
| `id` | Global index of the entry in the dataset |
| `dataset` | Video source: `scannet`, `arkitscenes` or `scannetpp` |
| `scene_name` | Scene (video) name for each question-answer pair |
| `question_type` | The type of task for question |
| `question` | Question asked about the video |
| `options` | Choices for the question (only for multiple choice questions) |
| `ground_truth` | Ground truth answer for the question |
| `pruned` | Boolean indicating if example was removed by Iterative Bias Pruning (IBP) |
### Why VSI-Bench-Debiased?
While the original VSI-Bench was designed to require visual understanding, our follow-up analysis revealed that a portion of questions could be answered using non-visual shortcuts—such as statistical biases in answer distributions or world knowledge priors—without actually processing the visual input.
**VSI-Bench-Debiased** addresses this through systematic robustification:
1. **Test-set Stress-Test (TsT)**: We applied k-fold cross-validation directly on the test set to identify samples with high non-visual solvability, assigning each sample a bias score.
2. **Iterative Bias Pruning (IBP)**: We iteratively removed samples with the highest bias scores, creating a subset that better compels genuine visual reasoning.
**Key improvements in VSI-Bench-Debiased:**
- **Reduced non-visual solvability**: Blind models (text-only, no vision) perform closer to chance
- **Wider vision-blind gap**: Greater performance difference between vision-enabled and vision-disabled models
- **Better isolation of visual reasoning**: Fine-tuning on in-distribution data improves vision-enabled performance much more than blind performance, confirming reduced shortcut reliance
For researchers interested in robust evaluation of visual-spatial intelligence, **we recommend reporting results on both the full and debiased subsets** to provide comprehensive assessment.
## Usage
### Dataset Configurations
This dataset provides three configurations for flexible evaluation:
| Config | Description | Usage |
|--------|-------------|-------|
| `full` (default) | All 5,131 examples with `pruned` column | Load all data, filter as needed |
| `debiased` | 2,363 examples (non-pruned subset) | Evaluate on robustified benchmark |
| `pruned` | 2,768 examples (pruned by IBP) | Analyze removed samples |
#### Loading the Dataset Annotations
##### Load specific configuration
If you want to load just a specific subset, you can use the config name with the `load_dataset` function as follows:
```python
from datasets import load_dataset
# Load full dataset (default)
vsi_bench_full = load_dataset("nyu-visionx/VSI-Bench")
# or use the config name "full"
vsi_bench_full = load_dataset("nyu-visionx/VSI-Bench", "full")
# Load debiased version only
vsi_bench_debiased = load_dataset("nyu-visionx/VSI-Bench", "debiased")
# Load pruned examples only
vsi_bench_pruned = load_dataset("nyu-visionx/VSI-Bench", "pruned")
```
##### Load full dataset and filter using `pruned` column (recommended)
> [!TIP]
> **For LMMS-Eval users:** We have updated the `vsi-bench` task to automatically report scores on both full and debiased subsets. (TODO: LINK).
We recommend loading the "full" set, evaluating on all samples, and then using the `pruned` column to compute scores on both the full and debiased subsets.
```python
from datasets import load_dataset
# Load full dataset with pruned annotations
vsi_bench_full = load_dataset("nyu-visionx/VSI-Bench")
# Evaluate on full set
model_predictions = evaluate_model(vsi_bench_full)
# Score on both the full and debiased subsets
full_acc = compute_accuracy(model_predictions)
debiased_acc = compute_accuracy(model_predictions.filter(lambda x: not x["pruned"]))
```
### Evaluation
> [!TIP]
> ***TODO: link to the LMMS Eval Code***
VSI-Bench evaluates performance using two metrics: for multiple-choice questions, we use `Accuracy`, calculated based on exact matches. For numerical-answer questions, we introduce a new metric, `MRA (Mean Relative Accuracy)`, to assess how closely model predictions align with ground truth values.
We provide an out-of-the-box evaluation of VSI-Bench in our [GitHub repository](https://github.com/vision-x-nyu/thinking-in-space), including the [metrics](https://github.com/vision-x-nyu/thinking-in-space/blob/main/lmms_eval/tasks/vsibench/utils.py#L109C1-L155C36) implementation used in our framework. For further detailes, users can refer to our paper and GitHub repository.
## Files
- `test-*.parquet`: Parquet files containing dataset annotations (questions, answers, metadata).
* `test_debiased.parquet`: Annotations for the debiased subset (2,363 examples)
* `test_pruned.parquet`: Annotations for the pruned subset (2,768 examples)
- `*.zip`: Compressed video files for the dataset
* `arkitscenes.zip`: Videos for the ARKitScenes dataset
* `scannet.zip`: Videos for the ScanNet dataset
* `scannetpp.zip`: Videos for the ScanNet++ dataset
- `pruned_ids.txt`: List of example IDs removed by Iterative Bias Pruning
- `create_pq.py`: Convenience script to regenerate parquet files from `test.jsonl` and `pruned_ids.txt`. Can be run with `uv run create_pq.py`.
## Citation
If you use these datasets in your research, please cite the original VSI-Bench paper and our debiasing paper that produced VSI-Bench-Debiased:
```bibtex
@inproceedings{yang2025thinking,
title={{Thinking in Space: How Multimodal Large Language Models See, Remember and Recall Spaces}},
author={Yang, Jihan and Yang, Shusheng and Gupta, Anjali and Han, Rilyn and Fei-Fei, Li and Xie, Saining},
booktitle={CVPR},
year={2025},
}
@article{brown2025benchmark,
title={{Benchmark Designers Should "Train on the Test Set" to Expose Exploitable Non-Visual Shortcuts}},
author={Brown, Ellis and Yang, Jihan and Yang, Shusheng and Fergus, Rob and Xie, Saining},
year={2025},
journal={arXiv preprint arXiv:2511.04655},
}
```
|