qanastek commited on
Commit
c8af372
·
1 Parent(s): 80e736b

Delete frenchmedmcqa.py

Browse files
Files changed (1) hide show
  1. frenchmedmcqa.py +0 -125
frenchmedmcqa.py DELETED
@@ -1,125 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """FrenchMedMCQA : A French Multiple-Choice Question Answering Corpus for Medical domain"""
16
-
17
- import os
18
- import json
19
-
20
- import datasets
21
-
22
- _DESCRIPTION = """\
23
- FrenchMedMCQA
24
- """
25
-
26
- _HOMEPAGE = "https://frenchmedmcqa.github.io"
27
-
28
- _LICENSE = "Apache License 2.0"
29
-
30
- _URL = "https://drive.google.com/uc?export=download&id=1uH5RvDQnEhfgwC6oXE_xfK63N6Q7slIZ"
31
-
32
- _CITATION = """\
33
- @unpublished{labrak:hal-03824241,
34
- TITLE = {{FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain}},
35
- AUTHOR = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Daille, Béatrice and Gourraud, Pierre-Antoine and Morin, Emmanuel and Rouvier, Mickael},
36
- URL = {https://hal.archives-ouvertes.fr/hal-03824241},
37
- NOTE = {working paper or preprint},
38
- YEAR = {2022},
39
- MONTH = Oct,
40
- PDF = {https://hal.archives-ouvertes.fr/hal-03824241/file/LOUHI_2022___QA-3.pdf},
41
- HAL_ID = {hal-03824241},
42
- HAL_VERSION = {v1},
43
- }
44
- """
45
-
46
- class FrenchMedMCQA(datasets.GeneratorBasedBuilder):
47
- """FrenchMedMCQA : A French Multi-Choice Question Answering Corpus for Medical domain"""
48
-
49
- VERSION = datasets.Version("1.0.0")
50
-
51
- def _info(self):
52
-
53
- features = datasets.Features(
54
- {
55
- "id": datasets.Value("string"),
56
- "question": datasets.Value("string"),
57
- "answer_a": datasets.Value("string"),
58
- "answer_b": datasets.Value("string"),
59
- "answer_c": datasets.Value("string"),
60
- "answer_d": datasets.Value("string"),
61
- "answer_e": datasets.Value("string"),
62
- "correct_answers": datasets.Sequence(
63
- datasets.features.ClassLabel(names=["a", "b", "c", "d", "e"]),
64
- ),
65
- "type": datasets.Value("string"),
66
- "subject_name": datasets.Value("string"),
67
- "number_correct_answers": datasets.features.ClassLabel(names=["1","2","3","4","5"]),
68
- }
69
- )
70
-
71
- return datasets.DatasetInfo(
72
- description=_DESCRIPTION,
73
- features=features,
74
- homepage=_HOMEPAGE,
75
- license=_LICENSE,
76
- citation=_CITATION,
77
- )
78
-
79
- def _split_generators(self, dl_manager):
80
- """Returns SplitGenerators."""
81
-
82
- data_dir = dl_manager.download_and_extract(_URL) + "/HuggingFace-Train-Dev-Archive-JSON/"
83
-
84
- return [
85
- datasets.SplitGenerator(
86
- name=datasets.Split.TRAIN,
87
- gen_kwargs={
88
- "filepath": os.path.join(data_dir, "train.json"),
89
- },
90
- ),
91
- datasets.SplitGenerator(
92
- name=datasets.Split.VALIDATION,
93
- gen_kwargs={
94
- "filepath": os.path.join(data_dir, "dev.json"),
95
- },
96
- ),
97
- # datasets.SplitGenerator(
98
- # name=datasets.Split.TEST,
99
- # gen_kwargs={
100
- # "filepath": os.path.join(data_dir, "test.json"),
101
- # },
102
- # ),
103
- ]
104
-
105
- def _generate_examples(self, filepath):
106
-
107
- with open(filepath, encoding="utf-8") as f:
108
-
109
- data = json.load(f)
110
-
111
- for key, d in enumerate(data):
112
-
113
- yield key, {
114
- "id": d["id"],
115
- "question": d["question"],
116
- "answer_a": d["answers"]["a"],
117
- "answer_b": d["answers"]["b"],
118
- "answer_c": d["answers"]["c"],
119
- "answer_d": d["answers"]["d"],
120
- "answer_e": d["answers"]["e"],
121
- "correct_answers": d["correct_answers"],
122
- "number_correct_answers": str(len(d["correct_answers"])),
123
- "type": d["type"],
124
- "subject_name": d["subject_name"],
125
- }