Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +108 -0
- README_HF.md +104 -0
- dataset_card.md +104 -0
- metadata.csv +0 -0
- plot_desi_spectra.py +247 -0
- sample_elg_galaxies.py +129 -0
- spectrum_GALAXY_0.6004_7006c68c_20250811_152534.json +0 -0
- spectrum_GALAXY_0.6005_02faa4bf_20250811_155621.json +0 -0
- spectrum_GALAXY_0.6008_6ce6cb33_20250811_155529.json +0 -0
- spectrum_GALAXY_0.6011_cebb7ee5_20250811_162429.json +0 -0
- spectrum_GALAXY_0.6067_9a28c694_20250811_160933.json +0 -0
- spectrum_GALAXY_0.6103_f21a4d7e_20250811_161921.json +0 -0
- spectrum_GALAXY_0.6116_a8282d87_20250811_162100.json +0 -0
- spectrum_GALAXY_0.6118_1489a218_20250811_162059.json +0 -0
- spectrum_GALAXY_0.6135_e5dc1406_20250811_162452.json +0 -0
- spectrum_GALAXY_0.6136_b4a514e0_20250811_160440.json +0 -0
- spectrum_GALAXY_0.6175_eecb7c1d_20250811_161002.json +0 -0
- spectrum_GALAXY_0.6177_95fdcf42_20250811_160536.json +0 -0
- spectrum_GALAXY_0.6179_6a5f0d21_20250811_160439.json +0 -0
- spectrum_GALAXY_0.6204_5af39e3b_20250811_160840.json +0 -0
- spectrum_GALAXY_0.6219_c0ef549a_20250811_155646.json +0 -0
- spectrum_GALAXY_0.6222_78d898aa_20250811_160823.json +0 -0
- spectrum_GALAXY_0.6232_bcd7e093_20250811_160432.json +0 -0
- spectrum_GALAXY_0.6242_f16f6497_20250811_162107.json +0 -0
- spectrum_GALAXY_0.6243_c1b34d42_20250811_162032.json +0 -0
- spectrum_GALAXY_0.6257_bae353db_20250811_160533.json +0 -0
- spectrum_GALAXY_0.6278_450a52c2_20250811_155702.json +0 -0
- spectrum_GALAXY_0.6283_065d858c_20250811_152530.json +0 -0
- spectrum_GALAXY_0.6300_926ed846_20250811_162150.json +0 -0
- spectrum_GALAXY_0.6301_d9adf642_20250811_162005.json +0 -0
- spectrum_GALAXY_0.6305_e06a8867_20250811_160933.json +0 -0
- spectrum_GALAXY_0.6335_49d3ee00_20250811_162009.json +0 -0
- spectrum_GALAXY_0.6342_40e72d49_20250811_160543.json +0 -0
- spectrum_GALAXY_0.6375_5065e5d8_20250811_162215.json +0 -0
- spectrum_GALAXY_0.6389_3c1e976b_20250811_162439.json +0 -0
- spectrum_GALAXY_0.6405_069dde84_20250811_162328.json +0 -0
- spectrum_GALAXY_0.6413_70fd16ea_20250811_162135.json +0 -0
- spectrum_GALAXY_0.6418_8c2456ca_20250811_162400.json +0 -0
- spectrum_GALAXY_0.6440_41808267_20250811_161901.json +0 -0
- spectrum_GALAXY_0.6455_9bb84015_20250811_161937.json +0 -0
- spectrum_GALAXY_0.6500_28bc39be_20250811_160421.json +0 -0
- spectrum_GALAXY_0.6506_bfca87aa_20250811_160608.json +0 -0
- spectrum_GALAXY_0.6527_f8e97f60_20250811_161837.json +0 -0
- spectrum_GALAXY_0.6534_27d72849_20250811_160902.json +0 -0
- spectrum_GALAXY_0.6556_971b4bd6_20250811_161010.json +0 -0
- spectrum_GALAXY_0.6557_8a53ac17_20250811_162411.json +0 -0
- spectrum_GALAXY_0.6578_a684f173_20250811_162245.json +0 -0
- spectrum_GALAXY_0.6595_3102415b_20250811_160531.json +0 -0
- spectrum_GALAXY_0.6599_4d3e2365_20250811_160551.json +0 -0
- spectrum_GALAXY_0.6618_9aaf95fb_20250811_160949.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DESI DR1 ELG Galaxy Spectra Dataset
|
| 2 |
+
|
| 3 |
+
This dataset contains 999 Emission Line Galaxy (ELG) spectra from the Dark Energy Spectroscopic Instrument (DESI) Data Release 1, along with associated metadata.
|
| 4 |
+
|
| 5 |
+
## Dataset Contents
|
| 6 |
+
|
| 7 |
+
- `metadata.csv` - Galaxy properties and catalog information (999 galaxies + header)
|
| 8 |
+
- `spectrum_GALAXY_*.json` - Individual spectrum files (999 files)
|
| 9 |
+
- `*.py` - Analysis and visualization scripts
|
| 10 |
+
|
| 11 |
+
## Metadata Columns (`metadata.csv`)
|
| 12 |
+
|
| 13 |
+
| Column | Description |
|
| 14 |
+
|--------|-------------|
|
| 15 |
+
| `targetid` | DESI target identifier |
|
| 16 |
+
| `galaxy_type` | Galaxy type classification (ELG) |
|
| 17 |
+
| `spectype` | Spectroscopic type (GALAXY) |
|
| 18 |
+
| `ra`, `dec` | Right ascension and declination (degrees) |
|
| 19 |
+
| `redshift` | Spectroscopic redshift |
|
| 20 |
+
| `z_bin` | Redshift bin (0.6-0.8, 0.8-1.0) |
|
| 21 |
+
| `survey` | DESI survey (main) |
|
| 22 |
+
| `program` | Observing program (dark) |
|
| 23 |
+
| `healpix` | HEALPix pixel ID |
|
| 24 |
+
| `desi_target`, `bgs_target`, `mws_target`, `scnd_target` | DESI targeting bitmasks |
|
| 25 |
+
|
| 26 |
+
## Spectrum File Format
|
| 27 |
+
|
| 28 |
+
Each `spectrum_GALAXY_*.json` file contains:
|
| 29 |
+
|
| 30 |
+
```json
|
| 31 |
+
{
|
| 32 |
+
"metadata": {
|
| 33 |
+
"sparcl_id": "UUID",
|
| 34 |
+
"object_type": "GALAXY",
|
| 35 |
+
"redshift": 0.6004,
|
| 36 |
+
"redshift_err": 7.4e-05,
|
| 37 |
+
"ra": 126.957,
|
| 38 |
+
"dec": 3.269,
|
| 39 |
+
"survey": "main",
|
| 40 |
+
"data_release": "DESI-DR1",
|
| 41 |
+
"targetid": 39636661465776861
|
| 42 |
+
},
|
| 43 |
+
"data": {
|
| 44 |
+
"wavelength": [3600.0, 3600.8, ...], // 7781 points, 3600-9824 Å
|
| 45 |
+
"flux": [...], // Observed flux (10⁻¹⁷ erg/s/cm²/Å)
|
| 46 |
+
"model": [...], // Best-fit model
|
| 47 |
+
"inverse_variance": [...] // 1/σ² for flux uncertainties
|
| 48 |
+
}
|
| 49 |
+
}
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## Quick Start
|
| 53 |
+
|
| 54 |
+
### Load metadata
|
| 55 |
+
```python
|
| 56 |
+
import pandas as pd
|
| 57 |
+
metadata = pd.read_csv('metadata.csv')
|
| 58 |
+
print(f"Dataset contains {len(metadata)} ELG galaxies")
|
| 59 |
+
print(f"Redshift range: {metadata['redshift'].min():.3f} - {metadata['redshift'].max():.3f}")
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
### Load a spectrum
|
| 63 |
+
```python
|
| 64 |
+
import json
|
| 65 |
+
import numpy as np
|
| 66 |
+
|
| 67 |
+
# Load spectrum file
|
| 68 |
+
with open('spectrum_GALAXY_0.6004_7006c68c_20250811_152534.json', 'r') as f:
|
| 69 |
+
spectrum = json.load(f)
|
| 70 |
+
|
| 71 |
+
# Extract data
|
| 72 |
+
wavelength = np.array(spectrum['data']['wavelength'])
|
| 73 |
+
flux = np.array(spectrum['data']['flux'])
|
| 74 |
+
model = np.array(spectrum['data']['model'])
|
| 75 |
+
redshift = spectrum['metadata']['redshift']
|
| 76 |
+
|
| 77 |
+
print(f"Galaxy at z={redshift:.4f}")
|
| 78 |
+
print(f"Spectrum covers {wavelength[0]:.0f}-{wavelength[-1]:.0f} Å")
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### Plot a spectrum
|
| 82 |
+
```python
|
| 83 |
+
import matplotlib.pyplot as plt
|
| 84 |
+
|
| 85 |
+
plt.figure(figsize=(12, 6))
|
| 86 |
+
plt.plot(wavelength, flux, 'k-', alpha=0.7, label='Observed')
|
| 87 |
+
plt.plot(wavelength, model, 'r-', label='Model')
|
| 88 |
+
plt.xlabel('Wavelength (Å)')
|
| 89 |
+
plt.ylabel('Flux (10⁻¹⁷ erg/s/cm²/Å)')
|
| 90 |
+
plt.title(f'DESI ELG Spectrum (z={redshift:.4f})')
|
| 91 |
+
plt.legend()
|
| 92 |
+
plt.grid(True, alpha=0.3)
|
| 93 |
+
plt.show()
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
## Analysis Scripts
|
| 97 |
+
|
| 98 |
+
- `plot_desi_spectra.py` - Create multi-panel spectrum plots and redshift distributions
|
| 99 |
+
- `sample_elg_galaxies.py` - Original sampling script for ELG selection
|
| 100 |
+
- `spectrum_downloader.py` - Script used to download spectra from DESI archives
|
| 101 |
+
|
| 102 |
+
## Dataset Statistics
|
| 103 |
+
|
| 104 |
+
- **Total galaxies**: 999
|
| 105 |
+
- **Redshift range**: 0.600 - 0.948
|
| 106 |
+
- **Spectral coverage**: 3600 - 9824 Å (7781 wavelength points)
|
| 107 |
+
- **Galaxy type**: Emission Line Galaxies (ELGs)
|
| 108 |
+
- **Survey**: DESI Main Survey (dark time program)
|
README_HF.md
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- other
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- astronomy
|
| 9 |
+
- spectroscopy
|
| 10 |
+
- galaxies
|
| 11 |
+
- desi
|
| 12 |
+
- cosmology
|
| 13 |
+
size_categories:
|
| 14 |
+
- n<1K
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# DESI DR1 ELG Galaxy Spectra Dataset
|
| 18 |
+
|
| 19 |
+
This dataset contains 999 Emission Line Galaxy (ELG) spectra from the Dark Energy Spectroscopic Instrument (DESI) Data Release 1, along with associated metadata. This is a curated sample of high-quality galaxy spectra suitable for research and educational purposes in astronomy and cosmology.
|
| 20 |
+
|
| 21 |
+
## Dataset Summary
|
| 22 |
+
|
| 23 |
+
- **Total galaxies**: 999 Emission Line Galaxies (ELGs)
|
| 24 |
+
- **Data source**: DESI Data Release 1
|
| 25 |
+
- **Redshift range**: 0.600 - 0.948
|
| 26 |
+
- **Spectral coverage**: 3600 - 9824 Å (7781 wavelength points per spectrum)
|
| 27 |
+
- **Survey**: DESI Main Survey (dark time program)
|
| 28 |
+
|
| 29 |
+
## Dataset Structure
|
| 30 |
+
|
| 31 |
+
### Files
|
| 32 |
+
|
| 33 |
+
- `metadata.csv` - Galaxy properties and catalog information (999 galaxies + header)
|
| 34 |
+
- `spectrum_GALAXY_*.json` - Individual spectrum files (999 files)
|
| 35 |
+
- `README.md` - Detailed documentation and usage examples
|
| 36 |
+
|
| 37 |
+
### Metadata Columns
|
| 38 |
+
|
| 39 |
+
| Column | Description |
|
| 40 |
+
|--------|-------------|
|
| 41 |
+
| `targetid` | DESI target identifier |
|
| 42 |
+
| `galaxy_type` | Galaxy type classification (ELG) |
|
| 43 |
+
| `spectype` | Spectroscopic type (GALAXY) |
|
| 44 |
+
| `ra`, `dec` | Right ascension and declination (degrees) |
|
| 45 |
+
| `redshift` | Spectroscopic redshift |
|
| 46 |
+
| `z_bin` | Redshift bin (0.6-0.8, 0.8-1.0) |
|
| 47 |
+
| `survey` | DESI survey (main) |
|
| 48 |
+
| `program` | Observing program (dark) |
|
| 49 |
+
| `healpix` | HEALPix pixel ID |
|
| 50 |
+
| `desi_target`, `bgs_target`, `mws_target`, `scnd_target` | DESI targeting bitmasks |
|
| 51 |
+
|
| 52 |
+
### Spectrum File Format
|
| 53 |
+
|
| 54 |
+
Each spectrum file contains:
|
| 55 |
+
- **Metadata**: Object properties (redshift, coordinates, survey info)
|
| 56 |
+
- **Spectral data**: Wavelength array, observed flux, model fit, and inverse variance
|
| 57 |
+
|
| 58 |
+
## Usage
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
import pandas as pd
|
| 62 |
+
import json
|
| 63 |
+
import numpy as np
|
| 64 |
+
|
| 65 |
+
# Load metadata
|
| 66 |
+
metadata = pd.read_csv('metadata.csv')
|
| 67 |
+
print(f"Dataset contains {len(metadata)} ELG galaxies")
|
| 68 |
+
|
| 69 |
+
# Load a spectrum
|
| 70 |
+
with open('spectrum_GALAXY_0.6004_7006c68c_20250811_152534.json', 'r') as f:
|
| 71 |
+
spectrum = json.load(f)
|
| 72 |
+
|
| 73 |
+
wavelength = np.array(spectrum['data']['wavelength'])
|
| 74 |
+
flux = np.array(spectrum['data']['flux'])
|
| 75 |
+
redshift = spectrum['metadata']['redshift']
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
## Data Source and Citation
|
| 79 |
+
|
| 80 |
+
This dataset is derived from the Dark Energy Spectroscopic Instrument (DESI) Data Release 1.
|
| 81 |
+
|
| 82 |
+
**DESI Collaboration**: Please cite the appropriate DESI DR1 papers when using this dataset:
|
| 83 |
+
- DESI Collaboration et al. (2024). "The Dark Energy Spectroscopic Instrument (DESI) Data Release 1"
|
| 84 |
+
|
| 85 |
+
## License
|
| 86 |
+
|
| 87 |
+
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
|
| 88 |
+
|
| 89 |
+
## Applications
|
| 90 |
+
|
| 91 |
+
This dataset is suitable for:
|
| 92 |
+
- Galaxy spectroscopy research
|
| 93 |
+
- Redshift analysis and cosmology studies
|
| 94 |
+
- Machine learning applications in astronomy
|
| 95 |
+
- Educational purposes in astrophysics courses
|
| 96 |
+
- Spectral analysis method development
|
| 97 |
+
|
| 98 |
+
## Technical Details
|
| 99 |
+
|
| 100 |
+
- **Wavelength coverage**: 3600-9824 Å
|
| 101 |
+
- **Spectral resolution**: ~7781 points per spectrum
|
| 102 |
+
- **Flux units**: 10⁻¹⁷ erg/s/cm²/Å
|
| 103 |
+
- **File format**: JSON for spectra, CSV for metadata
|
| 104 |
+
- **Total size**: ~2.5 GB (including all spectrum files)
|
dataset_card.md
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- other
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- astronomy
|
| 9 |
+
- spectroscopy
|
| 10 |
+
- galaxies
|
| 11 |
+
- desi
|
| 12 |
+
- cosmology
|
| 13 |
+
size_categories:
|
| 14 |
+
- n<1K
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# DESI DR1 ELG Galaxy Spectra Dataset
|
| 18 |
+
|
| 19 |
+
This dataset contains 999 Emission Line Galaxy (ELG) spectra from the Dark Energy Spectroscopic Instrument (DESI) Data Release 1, along with associated metadata. This is a curated sample of high-quality galaxy spectra suitable for research and educational purposes in astronomy and cosmology.
|
| 20 |
+
|
| 21 |
+
## Dataset Summary
|
| 22 |
+
|
| 23 |
+
- **Total galaxies**: 999 Emission Line Galaxies (ELGs)
|
| 24 |
+
- **Data source**: DESI Data Release 1
|
| 25 |
+
- **Redshift range**: 0.600 - 0.948
|
| 26 |
+
- **Spectral coverage**: 3600 - 9824 Å (7781 wavelength points per spectrum)
|
| 27 |
+
- **Survey**: DESI Main Survey (dark time program)
|
| 28 |
+
|
| 29 |
+
## Dataset Structure
|
| 30 |
+
|
| 31 |
+
### Files
|
| 32 |
+
|
| 33 |
+
- `metadata.csv` - Galaxy properties and catalog information (999 galaxies + header)
|
| 34 |
+
- `spectrum_GALAXY_*.json` - Individual spectrum files (999 files)
|
| 35 |
+
- `README.md` - Detailed documentation and usage examples
|
| 36 |
+
|
| 37 |
+
### Metadata Columns
|
| 38 |
+
|
| 39 |
+
| Column | Description |
|
| 40 |
+
|--------|-------------|
|
| 41 |
+
| `targetid` | DESI target identifier |
|
| 42 |
+
| `galaxy_type` | Galaxy type classification (ELG) |
|
| 43 |
+
| `spectype` | Spectroscopic type (GALAXY) |
|
| 44 |
+
| `ra`, `dec` | Right ascension and declination (degrees) |
|
| 45 |
+
| `redshift` | Spectroscopic redshift |
|
| 46 |
+
| `z_bin` | Redshift bin (0.6-0.8, 0.8-1.0) |
|
| 47 |
+
| `survey` | DESI survey (main) |
|
| 48 |
+
| `program` | Observing program (dark) |
|
| 49 |
+
| `healpix` | HEALPix pixel ID |
|
| 50 |
+
| `desi_target`, `bgs_target`, `mws_target`, `scnd_target` | DESI targeting bitmasks |
|
| 51 |
+
|
| 52 |
+
### Spectrum File Format
|
| 53 |
+
|
| 54 |
+
Each spectrum file contains:
|
| 55 |
+
- **Metadata**: Object properties (redshift, coordinates, survey info)
|
| 56 |
+
- **Spectral data**: Wavelength array, observed flux, model fit, and inverse variance
|
| 57 |
+
|
| 58 |
+
## Usage
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
import pandas as pd
|
| 62 |
+
import json
|
| 63 |
+
import numpy as np
|
| 64 |
+
|
| 65 |
+
# Load metadata
|
| 66 |
+
metadata = pd.read_csv('metadata.csv')
|
| 67 |
+
print(f"Dataset contains {len(metadata)} ELG galaxies")
|
| 68 |
+
|
| 69 |
+
# Load a spectrum
|
| 70 |
+
with open('spectrum_GALAXY_0.6004_7006c68c_20250811_152534.json', 'r') as f:
|
| 71 |
+
spectrum = json.load(f)
|
| 72 |
+
|
| 73 |
+
wavelength = np.array(spectrum['data']['wavelength'])
|
| 74 |
+
flux = np.array(spectrum['data']['flux'])
|
| 75 |
+
redshift = spectrum['metadata']['redshift']
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
## Data Source and Citation
|
| 79 |
+
|
| 80 |
+
This dataset is derived from the Dark Energy Spectroscopic Instrument (DESI) Data Release 1.
|
| 81 |
+
|
| 82 |
+
**DESI Collaboration**: Please cite the appropriate DESI DR1 papers when using this dataset:
|
| 83 |
+
- DESI Collaboration et al. (2024). "The Dark Energy Spectroscopic Instrument (DESI) Data Release 1"
|
| 84 |
+
|
| 85 |
+
## License
|
| 86 |
+
|
| 87 |
+
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
|
| 88 |
+
|
| 89 |
+
## Applications
|
| 90 |
+
|
| 91 |
+
This dataset is suitable for:
|
| 92 |
+
- Galaxy spectroscopy research
|
| 93 |
+
- Redshift analysis and cosmology studies
|
| 94 |
+
- Machine learning applications in astronomy
|
| 95 |
+
- Educational purposes in astrophysics courses
|
| 96 |
+
- Spectral analysis method development
|
| 97 |
+
|
| 98 |
+
## Technical Details
|
| 99 |
+
|
| 100 |
+
- **Wavelength coverage**: 3600-9824 Å
|
| 101 |
+
- **Spectral resolution**: ~7781 points per spectrum
|
| 102 |
+
- **Flux units**: 10⁻¹⁷ erg/s/cm²/Å
|
| 103 |
+
- **File format**: JSON for spectra, CSV for metadata
|
| 104 |
+
- **Total size**: ~2.5 GB (including all spectrum files)
|
metadata.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
plot_desi_spectra.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
DESI Spectrum Plotter
|
| 4 |
+
Plot downloaded DESI galaxy spectra with metadata annotations
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import glob
|
| 12 |
+
from typing import Dict, Any, List
|
| 13 |
+
import random
|
| 14 |
+
|
| 15 |
+
def load_spectrum_file(filepath: str) -> Dict[str, Any]:
|
| 16 |
+
"""Load a spectrum JSON file and return the data"""
|
| 17 |
+
with open(filepath, 'r') as f:
|
| 18 |
+
return json.load(f)
|
| 19 |
+
|
| 20 |
+
def get_spectrum_files(data_dir: str = '/Users/sandyyuan/astro_mcp_data/desi') -> List[str]:
|
| 21 |
+
"""Get all spectrum files from the data directory"""
|
| 22 |
+
pattern = str(Path(data_dir) / 'spectrum_GALAXY_*.json')
|
| 23 |
+
files = glob.glob(pattern)
|
| 24 |
+
return sorted(files)
|
| 25 |
+
|
| 26 |
+
def plot_spectrum(spectrum_data: Dict[str, Any], ax, title_suffix: str = ""):
|
| 27 |
+
"""Plot a single spectrum with metadata"""
|
| 28 |
+
|
| 29 |
+
# Extract spectral data
|
| 30 |
+
wavelength = np.array(spectrum_data['data']['wavelength'])
|
| 31 |
+
flux = np.array(spectrum_data['data']['flux'])
|
| 32 |
+
inverse_variance = np.array(spectrum_data['data']['inverse_variance'])
|
| 33 |
+
model = np.array(spectrum_data['data']['model'])
|
| 34 |
+
|
| 35 |
+
# Convert inverse variance to flux error (avoid division by zero)
|
| 36 |
+
flux_err = np.where(inverse_variance > 0, 1.0 / np.sqrt(inverse_variance), np.inf)
|
| 37 |
+
|
| 38 |
+
# Extract metadata
|
| 39 |
+
metadata = spectrum_data['metadata']
|
| 40 |
+
|
| 41 |
+
# Plot the spectrum
|
| 42 |
+
ax.plot(wavelength, flux, 'k-', alpha=0.7, linewidth=0.8, label='Observed Flux')
|
| 43 |
+
ax.plot(wavelength, model, 'r-', alpha=0.8, linewidth=1.0, label='Model Fit')
|
| 44 |
+
|
| 45 |
+
# Add error bars (thinned out for visibility)
|
| 46 |
+
step = max(1, len(wavelength) // 100) # Show every ~100th error bar
|
| 47 |
+
ax.errorbar(wavelength[::step], flux[::step], yerr=flux_err[::step],
|
| 48 |
+
fmt='none', alpha=0.3, color='gray', capsize=0)
|
| 49 |
+
|
| 50 |
+
# Format axes
|
| 51 |
+
ax.set_xlabel('Wavelength (Å)')
|
| 52 |
+
ax.set_ylabel('Flux (10⁻¹⁷ erg/s/cm²/Å)')
|
| 53 |
+
ax.grid(True, alpha=0.3)
|
| 54 |
+
ax.legend(fontsize=8)
|
| 55 |
+
|
| 56 |
+
# Create title with key metadata
|
| 57 |
+
redshift = metadata.get('redshift', 'Unknown')
|
| 58 |
+
obj_type = metadata.get('object_type', 'Unknown')
|
| 59 |
+
survey = metadata.get('survey', 'Unknown')
|
| 60 |
+
target_id = metadata.get('targetid', 'Unknown')
|
| 61 |
+
|
| 62 |
+
title = f"{obj_type} at z={redshift:.4f}{title_suffix}"
|
| 63 |
+
ax.set_title(title, fontsize=10, fontweight='bold')
|
| 64 |
+
|
| 65 |
+
# Add metadata text box
|
| 66 |
+
ra = metadata.get('ra', 'Unknown')
|
| 67 |
+
dec = metadata.get('dec', 'Unknown')
|
| 68 |
+
redshift_err = metadata.get('redshift_err', 'Unknown')
|
| 69 |
+
|
| 70 |
+
metadata_text = (
|
| 71 |
+
f"Target ID: {target_id}\n"
|
| 72 |
+
f"RA, Dec: {ra:.4f}°, {dec:.4f}°\n"
|
| 73 |
+
f"z ± err: {redshift:.4f} ± {redshift_err}\n"
|
| 74 |
+
f"Survey: {survey}"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Position text box in upper right
|
| 78 |
+
ax.text(0.98, 0.98, metadata_text, transform=ax.transAxes,
|
| 79 |
+
verticalalignment='top', horizontalalignment='right',
|
| 80 |
+
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8),
|
| 81 |
+
fontsize=7, family='monospace')
|
| 82 |
+
|
| 83 |
+
return ax
|
| 84 |
+
|
| 85 |
+
def create_spectrum_plots(num_plots: int = 6):
|
| 86 |
+
"""Create a grid of spectrum plots"""
|
| 87 |
+
|
| 88 |
+
print("🔍 Finding DESI spectrum files...")
|
| 89 |
+
spectrum_files = get_spectrum_files()
|
| 90 |
+
|
| 91 |
+
if not spectrum_files:
|
| 92 |
+
print("❌ No spectrum files found!")
|
| 93 |
+
return
|
| 94 |
+
|
| 95 |
+
print(f"📊 Found {len(spectrum_files)} spectrum files")
|
| 96 |
+
|
| 97 |
+
# Select a diverse sample
|
| 98 |
+
if len(spectrum_files) > num_plots:
|
| 99 |
+
# Try to get a good spread of redshifts
|
| 100 |
+
selected_files = random.sample(spectrum_files, num_plots)
|
| 101 |
+
else:
|
| 102 |
+
selected_files = spectrum_files
|
| 103 |
+
num_plots = len(spectrum_files)
|
| 104 |
+
|
| 105 |
+
# Create subplot grid
|
| 106 |
+
cols = 2
|
| 107 |
+
rows = (num_plots + cols - 1) // cols
|
| 108 |
+
|
| 109 |
+
fig, axes = plt.subplots(rows, cols, figsize=(15, 4 * rows))
|
| 110 |
+
fig.suptitle('DESI Galaxy Spectra - ELG Sample', fontsize=16, fontweight='bold')
|
| 111 |
+
|
| 112 |
+
# Handle single subplot case
|
| 113 |
+
if num_plots == 1:
|
| 114 |
+
axes = [axes]
|
| 115 |
+
elif rows == 1:
|
| 116 |
+
axes = axes.reshape(1, -1)
|
| 117 |
+
|
| 118 |
+
# Flatten axes for easy iteration
|
| 119 |
+
axes_flat = axes.flatten() if num_plots > 1 else axes
|
| 120 |
+
|
| 121 |
+
print(f"\n📈 Creating plots for {len(selected_files)} spectra...")
|
| 122 |
+
|
| 123 |
+
for i, filepath in enumerate(selected_files):
|
| 124 |
+
print(f" Loading spectrum {i+1}/{len(selected_files)}: {Path(filepath).name}")
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
# Load spectrum data
|
| 128 |
+
spectrum_data = load_spectrum_file(filepath)
|
| 129 |
+
|
| 130 |
+
# Plot spectrum
|
| 131 |
+
ax = axes_flat[i] if num_plots > 1 else axes_flat[0]
|
| 132 |
+
plot_spectrum(spectrum_data, ax, f" ({i+1}/{len(selected_files)})")
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f" ❌ Error loading {filepath}: {e}")
|
| 136 |
+
continue
|
| 137 |
+
|
| 138 |
+
# Hide unused subplots
|
| 139 |
+
for i in range(len(selected_files), len(axes_flat)):
|
| 140 |
+
axes_flat[i].set_visible(False)
|
| 141 |
+
|
| 142 |
+
plt.tight_layout()
|
| 143 |
+
|
| 144 |
+
# Save the plot
|
| 145 |
+
output_file = '/Users/sandyyuan/astro_mcp_data/desi_spectra_plots.png'
|
| 146 |
+
plt.savefig(output_file, dpi=300, bbox_inches='tight')
|
| 147 |
+
print(f"\n💾 Plot saved to: {output_file}")
|
| 148 |
+
|
| 149 |
+
plt.show()
|
| 150 |
+
|
| 151 |
+
def create_redshift_distribution_plot():
|
| 152 |
+
"""Create a plot showing the redshift distribution of our sample"""
|
| 153 |
+
|
| 154 |
+
print("\n📊 Creating redshift distribution plot...")
|
| 155 |
+
spectrum_files = get_spectrum_files()
|
| 156 |
+
|
| 157 |
+
redshifts = []
|
| 158 |
+
object_types = []
|
| 159 |
+
|
| 160 |
+
for filepath in spectrum_files:
|
| 161 |
+
try:
|
| 162 |
+
spectrum_data = load_spectrum_file(filepath)
|
| 163 |
+
metadata = spectrum_data['metadata']
|
| 164 |
+
redshift = metadata.get('redshift')
|
| 165 |
+
obj_type = metadata.get('object_type', 'Unknown')
|
| 166 |
+
|
| 167 |
+
if redshift is not None:
|
| 168 |
+
redshifts.append(float(redshift))
|
| 169 |
+
object_types.append(obj_type)
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f" Warning: Could not load {filepath}: {e}")
|
| 172 |
+
continue
|
| 173 |
+
|
| 174 |
+
if not redshifts:
|
| 175 |
+
print("❌ No valid redshift data found!")
|
| 176 |
+
return
|
| 177 |
+
|
| 178 |
+
# Create histogram
|
| 179 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
|
| 180 |
+
|
| 181 |
+
# Redshift histogram
|
| 182 |
+
ax1.hist(redshifts, bins=15, alpha=0.7, color='skyblue', edgecolor='black')
|
| 183 |
+
ax1.set_xlabel('Redshift (z)')
|
| 184 |
+
ax1.set_ylabel('Number of Galaxies')
|
| 185 |
+
ax1.set_title(f'Redshift Distribution of Downloaded DESI Spectra (N={len(redshifts)})')
|
| 186 |
+
ax1.grid(True, alpha=0.3)
|
| 187 |
+
|
| 188 |
+
# Add statistics
|
| 189 |
+
mean_z = np.mean(redshifts)
|
| 190 |
+
median_z = np.median(redshifts)
|
| 191 |
+
min_z = np.min(redshifts)
|
| 192 |
+
max_z = np.max(redshifts)
|
| 193 |
+
|
| 194 |
+
stats_text = (
|
| 195 |
+
f"Mean z: {mean_z:.3f}\n"
|
| 196 |
+
f"Median z: {median_z:.3f}\n"
|
| 197 |
+
f"Range: {min_z:.3f} - {max_z:.3f}"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
ax1.text(0.98, 0.98, stats_text, transform=ax1.transAxes,
|
| 201 |
+
verticalalignment='top', horizontalalignment='right',
|
| 202 |
+
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8),
|
| 203 |
+
fontsize=10)
|
| 204 |
+
|
| 205 |
+
# Object type counts
|
| 206 |
+
from collections import Counter
|
| 207 |
+
type_counts = Counter(object_types)
|
| 208 |
+
|
| 209 |
+
ax2.bar(type_counts.keys(), type_counts.values(), alpha=0.7, color='lightcoral')
|
| 210 |
+
ax2.set_xlabel('Object Type')
|
| 211 |
+
ax2.set_ylabel('Count')
|
| 212 |
+
ax2.set_title('Object Type Distribution')
|
| 213 |
+
ax2.grid(True, alpha=0.3)
|
| 214 |
+
|
| 215 |
+
plt.tight_layout()
|
| 216 |
+
|
| 217 |
+
# Save the plot
|
| 218 |
+
output_file = '/Users/sandyyuan/astro_mcp_data/desi_redshift_distribution.png'
|
| 219 |
+
plt.savefig(output_file, dpi=300, bbox_inches='tight')
|
| 220 |
+
print(f"💾 Distribution plot saved to: {output_file}")
|
| 221 |
+
|
| 222 |
+
plt.show()
|
| 223 |
+
|
| 224 |
+
return redshifts, object_types
|
| 225 |
+
|
| 226 |
+
def main():
|
| 227 |
+
"""Main function to create all plots"""
|
| 228 |
+
print("="*80)
|
| 229 |
+
print("🌌 DESI SPECTRUM VISUALIZATION")
|
| 230 |
+
print("="*80)
|
| 231 |
+
|
| 232 |
+
# Create spectrum plots
|
| 233 |
+
create_spectrum_plots(num_plots=6)
|
| 234 |
+
|
| 235 |
+
# Create distribution plots
|
| 236 |
+
redshifts, obj_types = create_redshift_distribution_plot()
|
| 237 |
+
|
| 238 |
+
print(f"\n✅ Visualization complete!")
|
| 239 |
+
print(f"📈 Plotted spectra from {len(redshifts)} galaxies")
|
| 240 |
+
print(f"🔴 Redshift range: {min(redshifts):.3f} - {max(redshifts):.3f}")
|
| 241 |
+
|
| 242 |
+
from collections import Counter
|
| 243 |
+
type_counts = Counter(obj_types)
|
| 244 |
+
print(f"📊 Object types: {dict(type_counts)}")
|
| 245 |
+
|
| 246 |
+
if __name__ == "__main__":
|
| 247 |
+
main()
|
sample_elg_galaxies.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Script to randomly sample 1000 ELG galaxies from DESI DR1
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
import os
|
| 9 |
+
import json
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
def sample_elg_galaxies():
|
| 13 |
+
"""Sample 1000 random ELG galaxies and prepare for spectrum download"""
|
| 14 |
+
|
| 15 |
+
# Configuration
|
| 16 |
+
elg_catalog_file = '/Users/sandyyuan/astro_mcp_data/desi/desi_search_dr1_types_galaxy_tracers_elg_20250811150055.csv'
|
| 17 |
+
output_dir = '/Users/sandyyuan/astro_mcp_data/elg_1000_sample'
|
| 18 |
+
n_samples = 1000
|
| 19 |
+
|
| 20 |
+
print("=== ELG Galaxy Sample Preparation ===")
|
| 21 |
+
print(f"Sampling {n_samples:,} ELG galaxies from DESI DR1")
|
| 22 |
+
print(f"Source file: {elg_catalog_file}")
|
| 23 |
+
print(f"Output directory: {output_dir}")
|
| 24 |
+
|
| 25 |
+
# Create output directory
|
| 26 |
+
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
# Load ELG catalog in chunks and sample randomly
|
| 29 |
+
print(f"\nLoading ELG catalog...")
|
| 30 |
+
chunk_size = 100000
|
| 31 |
+
sampled_galaxies = []
|
| 32 |
+
total_loaded = 0
|
| 33 |
+
|
| 34 |
+
for chunk in pd.read_csv(elg_catalog_file, chunksize=chunk_size):
|
| 35 |
+
total_loaded += len(chunk)
|
| 36 |
+
print(f" Loaded {total_loaded:,} galaxies so far...")
|
| 37 |
+
|
| 38 |
+
# Sample from this chunk proportionally
|
| 39 |
+
chunk_sample_size = min(n_samples, max(1, int(n_samples * len(chunk) / 100000)))
|
| 40 |
+
if len(sampled_galaxies) < n_samples:
|
| 41 |
+
remaining = n_samples - len(sampled_galaxies)
|
| 42 |
+
sample_size = min(chunk_sample_size, remaining, len(chunk))
|
| 43 |
+
|
| 44 |
+
if sample_size > 0:
|
| 45 |
+
chunk_sample = chunk.sample(n=sample_size, random_state=42)
|
| 46 |
+
sampled_galaxies.append(chunk_sample)
|
| 47 |
+
print(f" Sampled {sample_size} galaxies from this chunk")
|
| 48 |
+
|
| 49 |
+
if len(sampled_galaxies) >= 10 or total_loaded >= 1000000: # Stop after reasonable amount
|
| 50 |
+
break
|
| 51 |
+
|
| 52 |
+
# Combine all samples
|
| 53 |
+
if sampled_galaxies:
|
| 54 |
+
sample_df = pd.concat(sampled_galaxies, ignore_index=True)
|
| 55 |
+
|
| 56 |
+
# If we have more than needed, randomly select final 1000
|
| 57 |
+
if len(sample_df) > n_samples:
|
| 58 |
+
sample_df = sample_df.sample(n=n_samples, random_state=123).reset_index(drop=True)
|
| 59 |
+
else:
|
| 60 |
+
print("Error: No galaxies sampled!")
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
+
print(f"\nFinal sample: {len(sample_df):,} ELG galaxies")
|
| 64 |
+
|
| 65 |
+
# Analyze sample
|
| 66 |
+
print(f"\n=== SAMPLE ANALYSIS ===")
|
| 67 |
+
print(f"Redshift range: {sample_df['redshift'].min():.4f} - {sample_df['redshift'].max():.4f}")
|
| 68 |
+
print(f"Mean redshift: {sample_df['redshift'].mean():.4f}")
|
| 69 |
+
print(f"Median redshift: {sample_df['redshift'].median():.4f}")
|
| 70 |
+
|
| 71 |
+
# Redshift distribution
|
| 72 |
+
bins = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0]
|
| 73 |
+
labels = ['0.6-0.8', '0.8-1.0', '1.0-1.2', '1.2-1.4', '1.4-1.6', '1.6+']
|
| 74 |
+
sample_df['z_bin'] = pd.cut(sample_df['redshift'], bins=bins, labels=labels, include_lowest=True)
|
| 75 |
+
|
| 76 |
+
print(f"\nRedshift distribution:")
|
| 77 |
+
z_counts = sample_df['z_bin'].value_counts().sort_index()
|
| 78 |
+
for z_bin, count in z_counts.items():
|
| 79 |
+
if pd.notna(z_bin):
|
| 80 |
+
print(f" {z_bin}: {count:,} galaxies ({count/len(sample_df)*100:.1f}%)")
|
| 81 |
+
|
| 82 |
+
# Survey programs
|
| 83 |
+
if 'program' in sample_df.columns:
|
| 84 |
+
print(f"\nSurvey programs:")
|
| 85 |
+
prog_counts = sample_df['program'].value_counts()
|
| 86 |
+
for program, count in prog_counts.items():
|
| 87 |
+
print(f" {program}: {count:,} galaxies ({count/len(sample_df)*100:.1f}%)")
|
| 88 |
+
|
| 89 |
+
# Save sample metadata
|
| 90 |
+
sample_file = os.path.join(output_dir, 'elg_sample_metadata.csv')
|
| 91 |
+
sample_df.to_csv(sample_file, index=False)
|
| 92 |
+
print(f"\nSaved galaxy sample metadata to: {sample_file}")
|
| 93 |
+
|
| 94 |
+
# Save target IDs
|
| 95 |
+
target_ids = [str(tid) for tid in sample_df['targetid'].tolist()]
|
| 96 |
+
target_ids_file = os.path.join(output_dir, 'target_ids.json')
|
| 97 |
+
with open(target_ids_file, 'w') as f:
|
| 98 |
+
json.dump(target_ids, f, indent=2)
|
| 99 |
+
print(f"Saved {len(target_ids):,} target IDs to: {target_ids_file}")
|
| 100 |
+
|
| 101 |
+
# Create summary
|
| 102 |
+
summary = {
|
| 103 |
+
'total_elg_galaxies_selected': len(sample_df),
|
| 104 |
+
'redshift_range': [float(sample_df['redshift'].min()), float(sample_df['redshift'].max())],
|
| 105 |
+
'mean_redshift': float(sample_df['redshift'].mean()),
|
| 106 |
+
'target_ids_file': target_ids_file,
|
| 107 |
+
'metadata_file': sample_file,
|
| 108 |
+
'ready_for_download': True
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
summary_file = os.path.join(output_dir, 'elg_sample_summary.json')
|
| 112 |
+
with open(summary_file, 'w') as f:
|
| 113 |
+
json.dump(summary, f, indent=2, default=str)
|
| 114 |
+
print(f"Saved summary to: {summary_file}")
|
| 115 |
+
|
| 116 |
+
# Print first few target IDs for download
|
| 117 |
+
print(f"\n=== READY FOR DOWNLOAD ===")
|
| 118 |
+
print(f"Use MCP function 'mcp_astro-mcp_get_spectrum_by_targetid' for each target ID")
|
| 119 |
+
print(f"First 10 target IDs:")
|
| 120 |
+
for i, tid in enumerate(target_ids[:10]):
|
| 121 |
+
print(f" {i+1:2d}. {tid}")
|
| 122 |
+
|
| 123 |
+
if len(target_ids) > 10:
|
| 124 |
+
print(f" ... and {len(target_ids)-10} more in {target_ids_file}")
|
| 125 |
+
|
| 126 |
+
print(f"\nAll files saved to: {output_dir}")
|
| 127 |
+
|
| 128 |
+
if __name__ == "__main__":
|
| 129 |
+
sample_elg_galaxies()
|
spectrum_GALAXY_0.6004_7006c68c_20250811_152534.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6005_02faa4bf_20250811_155621.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6008_6ce6cb33_20250811_155529.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6011_cebb7ee5_20250811_162429.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6067_9a28c694_20250811_160933.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6103_f21a4d7e_20250811_161921.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6116_a8282d87_20250811_162100.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6118_1489a218_20250811_162059.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6135_e5dc1406_20250811_162452.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6136_b4a514e0_20250811_160440.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6175_eecb7c1d_20250811_161002.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6177_95fdcf42_20250811_160536.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6179_6a5f0d21_20250811_160439.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6204_5af39e3b_20250811_160840.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6219_c0ef549a_20250811_155646.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6222_78d898aa_20250811_160823.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6232_bcd7e093_20250811_160432.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6242_f16f6497_20250811_162107.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6243_c1b34d42_20250811_162032.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6257_bae353db_20250811_160533.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6278_450a52c2_20250811_155702.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6283_065d858c_20250811_152530.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6300_926ed846_20250811_162150.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6301_d9adf642_20250811_162005.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6305_e06a8867_20250811_160933.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6335_49d3ee00_20250811_162009.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6342_40e72d49_20250811_160543.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6375_5065e5d8_20250811_162215.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6389_3c1e976b_20250811_162439.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6405_069dde84_20250811_162328.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6413_70fd16ea_20250811_162135.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6418_8c2456ca_20250811_162400.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6440_41808267_20250811_161901.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6455_9bb84015_20250811_161937.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6500_28bc39be_20250811_160421.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6506_bfca87aa_20250811_160608.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6527_f8e97f60_20250811_161837.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6534_27d72849_20250811_160902.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6556_971b4bd6_20250811_161010.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6557_8a53ac17_20250811_162411.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6578_a684f173_20250811_162245.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6595_3102415b_20250811_160531.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6599_4d3e2365_20250811_160551.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
spectrum_GALAXY_0.6618_9aaf95fb_20250811_160949.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|