#!/usr/bin/env python3 """ Script to randomly sample 1000 ELG galaxies from DESI DR1 """ import pandas as pd import numpy as np import os import json from pathlib import Path def sample_elg_galaxies(): """Sample 1000 random ELG galaxies and prepare for spectrum download""" # Configuration elg_catalog_file = '/Users/sandyyuan/astro_mcp_data/desi/desi_search_dr1_types_galaxy_tracers_elg_20250811150055.csv' output_dir = '/Users/sandyyuan/astro_mcp_data/elg_1000_sample' n_samples = 1000 print("=== ELG Galaxy Sample Preparation ===") print(f"Sampling {n_samples:,} ELG galaxies from DESI DR1") print(f"Source file: {elg_catalog_file}") print(f"Output directory: {output_dir}") # Create output directory Path(output_dir).mkdir(parents=True, exist_ok=True) # Load ELG catalog in chunks and sample randomly print(f"\nLoading ELG catalog...") chunk_size = 100000 sampled_galaxies = [] total_loaded = 0 for chunk in pd.read_csv(elg_catalog_file, chunksize=chunk_size): total_loaded += len(chunk) print(f" Loaded {total_loaded:,} galaxies so far...") # Sample from this chunk proportionally chunk_sample_size = min(n_samples, max(1, int(n_samples * len(chunk) / 100000))) if len(sampled_galaxies) < n_samples: remaining = n_samples - len(sampled_galaxies) sample_size = min(chunk_sample_size, remaining, len(chunk)) if sample_size > 0: chunk_sample = chunk.sample(n=sample_size, random_state=42) sampled_galaxies.append(chunk_sample) print(f" Sampled {sample_size} galaxies from this chunk") if len(sampled_galaxies) >= 10 or total_loaded >= 1000000: # Stop after reasonable amount break # Combine all samples if sampled_galaxies: sample_df = pd.concat(sampled_galaxies, ignore_index=True) # If we have more than needed, randomly select final 1000 if len(sample_df) > n_samples: sample_df = sample_df.sample(n=n_samples, random_state=123).reset_index(drop=True) else: print("Error: No galaxies sampled!") return print(f"\nFinal sample: {len(sample_df):,} ELG galaxies") # Analyze sample print(f"\n=== SAMPLE ANALYSIS ===") print(f"Redshift range: {sample_df['redshift'].min():.4f} - {sample_df['redshift'].max():.4f}") print(f"Mean redshift: {sample_df['redshift'].mean():.4f}") print(f"Median redshift: {sample_df['redshift'].median():.4f}") # Redshift distribution bins = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0] labels = ['0.6-0.8', '0.8-1.0', '1.0-1.2', '1.2-1.4', '1.4-1.6', '1.6+'] sample_df['z_bin'] = pd.cut(sample_df['redshift'], bins=bins, labels=labels, include_lowest=True) print(f"\nRedshift distribution:") z_counts = sample_df['z_bin'].value_counts().sort_index() for z_bin, count in z_counts.items(): if pd.notna(z_bin): print(f" {z_bin}: {count:,} galaxies ({count/len(sample_df)*100:.1f}%)") # Survey programs if 'program' in sample_df.columns: print(f"\nSurvey programs:") prog_counts = sample_df['program'].value_counts() for program, count in prog_counts.items(): print(f" {program}: {count:,} galaxies ({count/len(sample_df)*100:.1f}%)") # Save sample metadata sample_file = os.path.join(output_dir, 'elg_sample_metadata.csv') sample_df.to_csv(sample_file, index=False) print(f"\nSaved galaxy sample metadata to: {sample_file}") # Save target IDs target_ids = [str(tid) for tid in sample_df['targetid'].tolist()] target_ids_file = os.path.join(output_dir, 'target_ids.json') with open(target_ids_file, 'w') as f: json.dump(target_ids, f, indent=2) print(f"Saved {len(target_ids):,} target IDs to: {target_ids_file}") # Create summary summary = { 'total_elg_galaxies_selected': len(sample_df), 'redshift_range': [float(sample_df['redshift'].min()), float(sample_df['redshift'].max())], 'mean_redshift': float(sample_df['redshift'].mean()), 'target_ids_file': target_ids_file, 'metadata_file': sample_file, 'ready_for_download': True } summary_file = os.path.join(output_dir, 'elg_sample_summary.json') with open(summary_file, 'w') as f: json.dump(summary, f, indent=2, default=str) print(f"Saved summary to: {summary_file}") # Print first few target IDs for download print(f"\n=== READY FOR DOWNLOAD ===") print(f"Use MCP function 'mcp_astro-mcp_get_spectrum_by_targetid' for each target ID") print(f"First 10 target IDs:") for i, tid in enumerate(target_ids[:10]): print(f" {i+1:2d}. {tid}") if len(target_ids) > 10: print(f" ... and {len(target_ids)-10} more in {target_ids_file}") print(f"\nAll files saved to: {output_dir}") if __name__ == "__main__": sample_elg_galaxies()