Datasets:
MLS-Sidon
Overview
This dataset is a cleansed version of Multilingual LibriSpeech (MLS) with Sidon speech restoration mode for Speech Synthesis and Spoken Language Modeling.
The dataset is provided in WebDataset format for efficient large-scale training.
- Source: Multilingual LibriSpeech
- Languages: English, German, French, Spanish, Italian, Portuguese, Polish, Dutch
- Format: WebDataset (
.tarshards) - License: CC-BY-4.0
Dataset Structure
Each sample in the dataset contains:
flac— audio file (48 kHz, single channel)meta.json(optional) — metadata including language, speaker ID, and original MLS reference
Example (inside a .tar shard):
000001.flac
000001.meta.json
000002.flac
000002.meta.json
...
How to Use
With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s datasets library:
from datasets import load_dataset
ds = load_dataset(
"webdataset",
data_files="https://huggingface.co/datasets/<username>/<repo>/resolve/main/{lang}_shard-{000000..000099}.tar",
split="train",
streaming=True
)
for sample in ds:
audio = sample["flac"]
text = sample["txt"]
print(audio, text)
Replace {lang} with the language (e.g., english, german).
With WebDataset (PyTorch)
import webdataset as wds
urls = "https://huggingface.co/datasets/<username>/<repo>/resolve/main/english_shard-{000000..000099}.tar"
dataset = (
wds.WebDataset(urls)
.decode()
.to_tuple("flac", "txt")
)
for audio, text in dataset:
...
Citation
If you use this dataset, please cite Sidon and the original MLS paper:
@misc{nakata2025sidonfastrobustopensource,
title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing},
author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
year={2025},
eprint={2509.17052},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2509.17052},
}
@inproceedings{pratap2020mls,
title = {MLS: A Large-Scale Multilingual Dataset for Speech Research},
author = {Pratap, Vineel and Xu, Qiantong and Sriram, Anuroop and others},
booktitle = {Interspeech},
year = {2020}
}
License
This dataset is released under CC-BY-4.0.
Acknowledgements
- Original data: Multilingual LibriSpeech (MLS)