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Chapter 1
Course Overview




1.1 Goals for 6.01
We have many goals for this course. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science. To achieve this goal, we will study electrical engi­ neering (EE) and computer science (CS) largely from the perspective of how to build systems that interact with, and attempt to control, an external environment. Such systems include everything from low-level controllers like heat regulators or cardiac pacemakers, to medium-level systems like automated navigation or virtual surgery, to high-level systems that provide more natural human-computer interfaces.
Our second goal is to show you that making mathematical models of real systems can help in the design and analysis of those systems; and to give you practice with the difficult step of deciding which aspects of the real world are important to the problem being solved and how to model them in ways that give insight into the problem.
We also hope to engage you more actively in the educational process. Most of the work of this course will not be like typical problems from the end of a chapter. You will work individually and in pairs to solve problems that are deeper and more open-ended. There will not be a unique right answer. Argument, explanation, and justification of approach will be more important than the answer. We hope to expose you to the ubiquity of trade-offs in engineering design: it is rare that an approach will be best in every dimension; some will excel in one way, others in a different way. Deciding how to make such trade-offs is a crucial part of engineering.
Another way in which we hope to engage you in the material is by having many of you return to the course as lab assistants in future semesters. Having a large number of lab assistants in the class means that students can be given more open-ended problems, and have people around to help them when they are stuck. Even more importantly, the lab assistants are meant to question the students as they go; to challenge their understanding and help them see and evaluate a variety of approaches. This process is of great intellectual value to student and lab assistant alike.
Finally, of course, we have the more typical goals of teaching exciting and important basic ma­ terial from electrical engineering and computer science, including modern software engineering, linear systems analysis, electronic circuits, and decision-making. This material all has an internal elegance and beauty, as well as crucial role in building modern EE and CS systems.
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1.2 Modularity, abstraction, and modeling
Whether proving a theorem by building up from lemmas to basic theorems to more specialized results, or designing a circuit by building up from components to modules to complex processors, or designing a software system by building up from generic procedures to classes to class libraries, humans deal with complexity by exploiting the power of abstraction and modularity. Without such tools, a single person would be overwhelmed by the complexity of a system, as there is only so much detail that a single person can consciously manage at a time.
Modularity is the idea of building components that can be re-used; and abstraction is the idea that after constructing a module (be it software or circuits or gears), most of the details of the module construction can be ignored and a simpler description used for module interaction (the module computes the square root, or doubles the voltage, or changes the direction of motion).
Given basic modules, one can move up a level of abstraction and construct a new module by putting together several previously-built modules, thinking only of their abstract descriptions, and not their implementations. And, of course, this process can be repeated over many stages. This process gives one the ability to construct systems with complexity far beyond what would be possible if it were necessary to understand each component in detail.
Any module can be described in a large number of ways. We might describe the circuitry in a digital watch in terms of how it behaves as a clock and a stopwatch, or in terms of voltages and currents within the circuit, or in terms of the heat produced at different parts of the circuitry. Each of these is a different model of the watch. Different models will be appropriate for different tasks: there is no single correct model. Rather, each model exposes different dimensions of the system, allowing us to explore many aspects of the design space of a system, and to trade off different factors in the performance of a system.
The primary theme of this course will be to learn about different methods for building modules out of primitives, and of building different abstract models of them, so that we can analyze or predict their behavior, and so we can recombine them into even more complex systems. The same fundamental principles will apply to software, to control systems, and to circuits.

1.2.1 Example problem
Imagine that you need to make a robot that will roll up close to a light bulb and stop a fixed distance from it. The first question is, how can we get electrical signals to relate to the physical phenomena of light readings and robot wheel rotations? There is a large part of electrical engi­ neering related to the design of physical devices that connect to the physical world in such a way that some electrical property of the device relates to a physical process in the world. For example, a light-sensitive resistor (photo-resistor) is a sensor whose resistance changes depending on light intensity impinging on it; a motor is an effector whose rotor speed is related to the voltage across its two terminals. In this course, we will not examine the detailed physics of sensors and effectors, but will concentrate on ways of designing systems that use sensors and effectors to perform both simple and more complicated tasks. To get a robot to stop in front of a light bulb, the problem will be to find a way to connect the photo-resistor to the motor, so that the robot will stop at an appro­ priate distance from the bulb. Thus, we will already use the idea of abstraction to treat sensors
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and effectors as primitive modules whose internal details we can ignore, and whose performance characteristics we can use as we design systems built on these elements.

1.2.2 An abstraction hierarchy of mechanisms
Given the light-sensitive resistor and the motor, we could find many ways of connecting them, using bits of metal and ceramic of different kinds, or making some kind of magnetic or mechanical linkages. The space of possible designs of machines is enormous.
One of the most important things that engineers do, when faced with a set of design problems, is to standardize on a basis set of components to use to build their systems. There are many reasons for standardizing on a basis set of components, mostly having to do with efficiency of understanding and of manufacturing. It is important, as a designer, to develop a repertoire of standard bits and pieces of designs that you understand well and can put together in various ways to make more complex systems. If you use the same basis set of components as other designers, you can learn valuable techniques from them, rather than having to re-invent the techniques yourself. And other people will be able to readily understand and modify your designs.
We can often make a design job easier by limiting the space of possible designs, and by standard­ izing on:
· a basis set of primitive components;
· ways of combining the primitive components to make more complex systems;
ways of “packaging” or abstracting pieces of a design so they can be reused (in essence creat­ ing new “primitives”); and•

· ways of capturing common patterns of abstraction (essentially, abstracting our abstractions).
Very complicated design problems can become tractable using such a primitive-combination­ abstraction-pattern (PCAP) approach. In this class, we will examine and learn to use a variety of PCAP strategies common in EE and CS, and will even design some of our own, for special pur­ poses. In the rest of this section, we will hint at some of the PCAP systems we will be developing in much greater depth throughout the class. Figure 1.1 shows one view of this development, as a successive set of restrictions of the design space of mechanisms.
One very important thing about abstract models is that once we have fixed the abstraction, it will usually be possible to implement it using a variety of different underlying substrates. So, as shown in figure 1.2, we can construct general-purpose computers out of a variety of different kinds of systems, including digital circuits and general-purpose computers. And systems satisfy­ ing the digital circuit abstraction can be constructed from analog circuits, but also from gears or water or light.
Another demonstration of the value of abstracted models is that we can use them, by analogy, to describe quite different systems. So, for example, the constraint models of circuits that we will study can be applied to describing transmission of neural signals down the spinal cord, or of heat through a network of connected bodies.
Let’s explore the abstraction hierarchy figure 1.1 in some more detail, moving up abstraction lev­ els while observing common patterns.
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Figure 1.2	A single abstraction may have a variety of different underlying implementations.
Circuits
Typical electronics circuits are built out of a basis set of primitive components such as voltage sources, resistors, capacitors, inductors and transistors. This set of component types was chosen to be closely related to primitive concepts in our physical understanding of electronic systems in terms of voltage, current, resistance, and the rate of change of those quantities over time. So, when we buy a physical resistor, we tend to think only of its resistance; and when we buy a capacitor, we think of its ability to store charge. But, of course, that physical resistor has some capacitance, and the capacitor, some resistance. Still, it helps us in our designs to have devices that are as close to the ideal models as possible; and it helps that people have been designing with these components for years, so that we can adopt the strategies that generations of clever people have developed.
The method of combining circuit elements is to connect their terminals with conductors (wires, crimps, solder, etc.), a process that is generically referred to as wiring. And our method of ab­ straction is to describe the constraints that a circuit element exerts on the currents and voltages of terminals to which the element is connected.
So, armed with the standard basis set of analog circuit components, we can try to build a circuit to control our robot. We have a resistance that varies with the light level, but we need a voltage that does so, as well. We can achieve this by using a voltage divider, which is shown in figure 1.3A. Using an abstract, constraint-based model of the behavior of circuit components that we will
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study in detail later in the course, we can determine the following relationship between Vout and
Vin:
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So, for example, if RA = RB, then Vout = Vin/2. Or, in our case, if RA actually varies with the amount of light shining on it, then Vout will also vary with the light.1
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Figure 1.3  Voltage dividers: A. Resistor divider. B. Connected to a motor, in a way that breaks
the abstraction from part A. C. Connected to a motor, with a buffer.
That is great. So, now, we might imagine that we could use this voltage difference that we have created to drive the motor at different speeds, depending on the light hitting the resistor, using a circuit something like the one shown in figure 1.3B. But, sadly, that will not work. It turns out that once we connect the motor to the circuit, it actually changes the voltages, and we can no longer maintain the voltage difference needed to drive the motor.
So, although we have developed an abstract model of the behavior of circuit components, which lets us analyze the behavior of a particular complete circuit design, it does not give us modu­ larity. That is, we cannot design two parts of a circuit, understand each of their behaviors, and then predict the behavior of the composite system based on the behavior of the separate compo­ nents. Instead, we would have to re-analyze the joint behavior of the whole composite system. Lack of modularity makes it very difficult to design large systems, because two different people, or the same person at two different times, cannot design pieces and put them together without understanding the whole.
To solve this problem, we can augment our analog-circuit toolbox with some additional compo­ nents that allow us to design components with modular behavior; they “buffer” or “isolate” one part of the circuit from another in ways that allow us to combine the parts more easily. In this class, we will use op-amps to build buffers, which will let us solve our sample problem using a slightly more complex circuit, as shown in figure 1.3C.
Thus, the key point is that good modules preserve abstraction barriers between the use of a mod­ ule and internal details of how they are constructed. We will see this theme recur as we discuss different PCAP systems.

1 Do not worry if this example does not make much sense to you; we will explore this all in great detail later.
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Digital circuits
In analog circuits, we think about voltages on terminals ranging over real values. This gives us the freedom to create an enormous variety of circuits, but sometimes that freedom actually makes the design process more difficult. To design ever more complex circuits, we can move to a much stronger, digital abstraction, in which the voltages on the terminals are thought of as only taking on values that are either “low” or “high” (often called 0 and 1). This PCAP system is made up of a basis set of elements, called gates, that are built out of simpler analog circuit components, such as transistors and resistors. Adopting the digital abstraction is a huge limitation on the kinds of circuits that can be built. However, digital circuits can be easy to design and build and also can be inexpensive because the basic elements (gates) are simple (fewer transisters are need to construct a gate than to construct an op amp), versatile (only a small number of different kinds of logic elements are necessary to construct an arbitrary digital circuit), and combinations are easy to think about (using Boolean logic). These properties allow designers to build incredibly complex machines by designing small parts and putting them together into increasingly larger pieces. Digital watches, calculators, and computers are all built this way.
Digital design is a very important part of EECS, and it is treated in a number of our courses at basic and advanced levels, but is not one of the topics we will go into in detail in 6.01. Nevertheless, the same central points that we explore in this course apply to this domain as well.

Computers
One of the most important developments in the design of digital circuits is that of the general- purpose “stored program” computer. Computers are a particular class of digital circuits that are general purpose: the same actual circuit can perform (almost) any transformation between its inputs and its outputs. Which particular transformation it performs is governed by a program, which is some settings of physical switches, or information written on an external physical mem­ ory, such as cards or a tape, or information stored in some sort of internal memory.
The “almost” in the previous section refers to the actual memory capacity of the computer. Exactly what computations a computer can perform depends on the amount of memory it has; and also on the time you are willing to wait. So, although a general-purpose computer can do anything a special-purpose digital circuit can do, in the information-processing sense, the computer might be slower or use more power. However, using general-purpose computers can save an enormous amount of engineering time and effort. It is much cheaper and easier to debug and modify and manufacture software than hardware. The modularities and abstractions that software PCAP systems give us are even more powerful than those derived from the digital circuit abstraction.
Again, we can see how abstraction separates use from details; we don’t need to know how the circuits inside a computer are designed, we just need to know the rules by which we can use them and the constraints under which they perform.

Python programs
Every general-purpose computer has a different detailed design, which means that the way its program needs to be specified is different. Furthermore, the “machine languages” for describing computer programs, at the most primitive level, are awkward for human programmers. So, we
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have developed a number of computer programming languages for specifying a desired com­ putation. These languages are converted into instructions in the computer’s native machine lan­ guage by other computer programs, called compilers or interpreters. One of the coolest and most powerful things about general-purpose computers is this ability to write computer programs that process or create or modify other computer programs.
Computer programming languages are PCAP systems. They provide primitive operations, ways of combining them, ways of abstracting over them, and ways of capturing common abstraction patterns. We will spend a considerable amount of time in this course studying the particular primitives, combination mechanisms, and abstraction mechanisms made available in the Python programming language. But the choice of Python is relatively unimportant. Virtually all modern programming languages supply a similar set of mechanisms, and the choice of programming language is primarily a matter of taste and convenience.
In a computer program we have both data primitives and computation primitives. At the most basic level, computers generally store binary digits (bits) in groups of 32 or 64, called words. These words are data primitives, and they can be interpreted by our programs as representing integers, floating-point numbers, strings, or addresses of other data in the computer’s memory. The computational primitives supported by most computers include numerical operations such as addition and multiplication, and locating and extracting the contents of a memory at a given address. In Python, we will work at a level of abstraction that does not require us to think very much about addresses of data, but it is useful to understand that level of description, as well.
Primitive data and computation elements can be combined and abstracted in a variety of differ­ ent ways, depending on choices of programming style. We will explore these in more detail in section 1.3.2.

1.2.3 Models
So far, we have discussed a number of ways of framing the problem of designing and construct­ ing mechanisms. Each PCAP system is accompanied by a modeling system that lets us make mathematical models of the systems we construct.
What is a model? It is a new system that is considerably simpler than the system being modeled, but which captures the important aspects of the original system. We might make a physical model of an airplane to test in a wind tunnel. It does not have to have passenger seats or landing lights; but it has to have surfaces of the correct shape, in order to capture the important properties for this purpose. Mathematical models can capture properties of systems that are important to us, and allow us to discover things about the system much more conveniently than by manipulating the original system itself.
One of the hardest things about building models is deciding which aspects of the original system to model and which ones to ignore. Many classic, dramatic engineering failures can be ascribed to failing to model important aspects of the system. One example (which turned out to be an ethical success story, rather than a failure) is LeMessurier’s Citicorp Building2, in which an engineering design change was made, but tested in a model in which the wind came only from a limited set of directions.

2 See “The Fifty-Nine Story Crisis”, The New Yorker, May 29, 1995, pp 45-53.
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Another important dimension in modeling is whether the model is deterministic or not. We might, for example, model the effect of the robot executing a command to set its velocity as mak­ ing an instantaneous change to the commanded velocity. But, of course, there is likely to be some delay and some error. We have to decide whether to ignore that delay and error in our model and treat it as if it were ideal; or, for example, to make a probabilistic model of the possible results of that command. Generally speaking, the more different the possible outcomes of a particular action or command, and the more diffuse the probability distribution over those outcomes, the more important it is to explicitly include uncertainty in the model.
Once we have a model, we can use it in a variety of different ways, which we explore below.

Analytical models
By far the most prevalent use of models is in analysis: Given a circuit design, what will the voltage on this terminal be? Given a computer program, will it compute the desired answer? How long will it take? Given a control system, implemented as a circuit or as a program, will the system stop at the right distance from the light bulb?
Analytical tools are important.  It can be hard to verify the correctness of a system by trying it in all possible initial conditions with all possible inputs; sometimes it is easier to develop a mathematical model and then prove a theorem about the model.
For some systems, such as pure software computations, or the addition circuitry in a calculator, it is possible to analyze correctness or speed with just a model of the system in question. For other systems, such as fuel injectors, it is impossible to analyze the correctness of the controller without also modeling the environment (or “plant”) to which it is connected, and then analyzing the behavior of the coupled system of the controller and environment.
To demonstrate some of these tradeoffs, we can do a very simple analysis of a robot moving to­ ward a lamp. Imagine that we arrange it so that the robot’s velocity at time t, V[t], is proportional to the difference between the actual light level, X[t], and a desired light level (that is, the light level we expect to encounter when the robot is the desired distance from the lamp), Xdesired; that is, we can model our control system with the difference equation
V[t] = k(Xdesired − X[t])
where k is the constant of proportionality, or gain, of the controller.
Now, we need to model the world. For simplicity, we equate the light level to the robot’s position (assuming that the units match); in addition we assume the robot’s position at time t is its position at time t − 1 plus its velocity at time t − 1 (actually, this should be the product of the velocity and the length of time between samples, but we can just assume a unit time step and thus use velocity). When we couple these models, we get the difference equation
X[t] = X[t − 1] + k(Xdesired − X[t − 1]) .
Now, for a given value of k, we can determine how the system will behave over time, by solving the difference equation in X.
Later in the course, we will see how easily-determined mathematical properties of a difference- equation model can tell us whether a control system will have the desired behavior and whether
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or not the controller will cause the system to oscillate. These same kinds of analyses can be applied to robot control systems as well as to the temporal properties of voltages in a circuit, and even to problems as unrelated as the consequences of a monetary policy decision in economics. It is important to note that treating the system as moving in discrete time steps is an approximation to underlying continuous dynamics; it can make models that are easier to analyze, but it requires sophisticated understanding of sampling to understand the effects of this approximation on the correctness of the results.

Synthetic models
One goal of many people in a variety of sub-disciplines of computer science and electrical en­ gineering is automatic synthesis of systems from formal descriptions of their desired behavior. For example, you might describe some properties you would want the input/output behavior of a circuit or computer program to have, and then have a computer system discover a circuit or program with the desired property.
This is a well-specified problem, but generally the search space of possible circuits or programs is much too large for an automated process; the intuition and previous experience of an expert human designer cannot yet be matched by computational search methods.
However, humans use informal models of systems for synthesis. The documentation of a software library, which describes the function of the various procedures, serves as an informal model that a programmer can use to assemble those components to build new, complex systems.

Internal models
As we wish to build more and more complex systems with software programs as controllers, we find that it is often useful to build additional layers of abstraction on top of the one provided by a generic programming language. This is particularly true when the nature of the exact computa­ tion required depends considerably on information that is only received during the execution of the system.
Consider, for example, an automated taxi robot (or, more prosaically, the navigation system in your new car). It takes, as input, a current location in the city and a goal location, and gives, as output, a path from the current location to the goal. It has a map built into it.
It is theoretically possible to build an enormous digital circuit or computer program that contains a look-up table, in which we precompute the path for all pairs of locations and store them away. Then when we want to find a path, we could simply look in the table at the location correspond­ ing to the start and goal location and retrieve the precomputed path. Unfortunately, the size of that table is too huge to contemplate. Instead, what we do is construct an abstraction of the prob­ lem as one of finding a path from any start state to any goal state, through a graph (an abstract mathematical construct of “nodes” with “arcs” connecting them). We can develop and implement a general-purpose algorithm that will solve any shortest-path problem in a graph. That algorithm and implementation will be useful for a wide variety of possible problems. And for the naviga­ tion system, all we have to do is represent the map as a graph, specify the start and goal states, and call the general graph-search algorithm.
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We can think of this process as actually putting a model of the system’s interactions with the world inside the controller; it can consider different courses of action in the world and pick the one that is the best according to some criterion.
Another example of using internal models is when the system has some significant lack of infor­ mation about the state of the environment. In such situations, it may be appropriate to explicitly model the set of possible states of the external world and their associated probabilities, and to update this model over time as new evidence is gathered. We will pursue an example of this approach near the end of the course.

1.3 Programming embedded systems
There are many different ways of thinking about modularity and abstraction for software. Differ­ ent models will make some things easier to say and do and others more difficult, making different models appropriate for different tasks. In the following sections, we explore different strate­ gies for building software systems that interact with an external environment, and then different strategies for specifying the purely computational part of a system.

1.3.1 Interacting with the environment
Increasingly, computer systems need to interact with the world around them, receiving informa­ tion about the external world, and taking actions to affect the world. Furthermore, the world is dynamic, so that as the system is computing, the world is changing, requiring future computation to adapt to the new state of the world.
There are a variety of different ways to organize computations that interact with an external world. Generally speaking, such a computation needs to:
1. get information from sensors (light sensors, sonars, mouse, keyboard, etc.),
2. perform computation, remembering some of the results, and
3. take actions to change the outside world (move the robot, print, draw, etc.). These operations can be put together in different styles.
1.3.1.1 Sequential
The most immediately straightforward style for constructing a program that interacts with the world is the basic imperative style, in which the program gives a sequence of ’commands’ to the system it is controlling. A library of special procedures is defined, some of which read information from the sensors and others of which cause actions to be performed. Example procedures might move a robot forward a fixed distance, or send a file out over the network, or move video-game characters on the screen.
In this model, we could naturally write a program that moves an idealized robot in a square, if there is space in front of it.
if noObstacleInFront: moveDistance(1) turnAngle(90) moveDistance(1)
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turnAngle(90) moveDistance(1) turnAngle(90) moveDistance(1) turnAngle(90)

The major problem with this style of programming is that the programmer has to remember to check the sensors sufficiently frequently. For instance, if the robot checks for free space in front, and then starts moving, it might turn out that a subsequent sensor reading will show that there is something in front of the robot, either because someone walked in front of it or because the previous reading was erroneous. It is hard to have the discipline, as a programmer, to remember to keep checking the sensor conditions frequently enough, and the resulting programs can be quite difficult to read and understand.
For the robot moving toward the light, we might write a program like this:
while lightValue < desiredValue: moveDistance(0.1)

This would have the robot creep up, step by step, toward the light. We might want to modify it so that the robot moved a distance that was related to the difference between the current and desired light values. However, if it takes larger steps, then during the time that it is moving it will not be sensitive to possible changes in the light value and cannot react immediately to them.

1.3.1.2 Event-Driven
User-interface programs are often best organized differently, as event-driven (also called interrupt driven) programs. In this case, the program is specified as a collection of procedures (called ’han­ dlers’ or ’callbacks’) that are attached to particular events that can take place. So, for example, there might be procedures that are called when the mouse is clicked on each button in the inter­ face, when the user types into a text field, or when the temperature of a reactor gets too high. An “event loop” runs continuously, checking to see whether any of the triggering events have happened, and, if they have, calling the associated procedure.
In our simple example, we might imagine writing a program that told the robot to drive forward by default; and then install an event handler that says that if the light level reaches the desired value, it should stop. This program would be reactive to sudden changes in the environment.
As the number and frequency of the conditions that need responses increases, it can be difficult to both keep a program like this running well and guarantee a minimum response time to any event.

1.3.1.3 Transducer
An alternative view is that programming a system that interacts with an external world is like building a transducer with internal state. Think of a transducer as a processing box that runs continuously. At regular intervals (perhaps many times per second), the transducer reads all of the sensors, does a small amount of computation, stores some values it will need for the next computation, and then generates output values for the actions.
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This computation happens over and over and over again. Complex behavior can arise out of the temporal pattern of inputs and outputs. So, for example, a robot might try to move forward without hitting something by defining a procedure:
def step():
distToFront = min(frontSonarReadings)
motorOutput(gain * (distToFront - desiredDistance), 0.0)

Executed repeatedly, this program will automatically modulate the robot’s speed to be propor­ tional to the free space in front of it.
The main problem with the transducer approach is that it can be difficult to do tasks that are fundamentally sequential (like the example of driving in a square, shown above). We will start with the transducer model, and then, as described in section 4.3, we will build a new abstraction layer on top of it that will make it easy to do sequential commands, as well.

1.3.2 Programming models
Just as there are different strategies for organizing entire software systems, there are different strategies for formally expressing computational processes within those structures.

1.3.2.1 Imperative computation
Most of you have probably been exposed to an imperative model of computer programming, in which we think of programs as giving a sequential set of instructions to the computer to do something. And, in fact, that is how the internals of the processors of computers are typically structured. So, in Java or C or C++, you write typically procedures that consist of lists of instruc­ tions to the computer:
1. Put this value in this variable
2. Square the variable
3. Divide it by pi
4. If the result is greater than 1, return the result
In this model of computation, the primitive computational elements are basic arithmetic opera­ tions and assignment statements. We can combine the elements using sequences of statements, and control structures such as if, for, and while. We can abstract away from the details of a computation by defining a procedure that does it. Now, the engineer only needs to know the specifications of the procedure, but not the implementation details, in order to use it.

1.3.2.2 Functional computation
Another style of programming is the functional style. In this model, we gain power through function calls. Rather than telling the computer to do things, we ask it questions: What is 4 + 5? What is the square root of 6? What is the largest element of the list?
These questions can all be expressed as asking for the value of a function applied to some argu­ ments. But where do the functions come from? The answer is, from other functions. We start with some set of basic functions (like “plus”), and use them to construct more complex functions.
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This method would not be powerful without the mechanisms of conditional evaluation and re­ cursion. Conditional functions ask one question under some conditions and another question under other conditions. Recursion is a mechanism that lets the definition of a function refer to the function being defined. Recursion is as powerful as iteration.
In this model of computation, the primitive computational elements are typically basic arithmetic and list operations. We combine elements using function composition (using the output of one function as the input to another), if, and recursion. We use function definition as a method of abstraction, and the idea of higher-order functions (passing functions as arguments to other functions) as a way of capturing common high-level patterns.

1.3.2.3 Data structures
In either style of asking the computer to do work for us, we have another kind of modularity and abstraction, which is centered around the organization of data.
At the most primitive level, computers operate on collections of (usually 32 or 64) bits. We can interpret such a collection of bits as representing different things: a positive integer, a signed integer, a floating-point number, a Boolean value (true or false), one or more characters, or an address of some other data in the memory of the computer. Python gives us the ability to work directly with all of these primitives, except for addresses.
There is only so much you can do with a single number, though. We would like to build computer programs that operate on representations of documents or maps or circuits or social networks. To do so, we need to aggregate primitive data elements into more complex data structures. These can include lists, arrays, dictionaries, and other structures of our own devising.
Here, again, we gain the power of abstraction. We can write programs that do operations on a data structure representing a social network, for example, without having to worry about the details of how the social network is represented in terms of bits in the machine.

1.3.2.4 Object-oriented programming: computation + data structures
Object-oriented programming is a style that applies the ideas of modularity and abstraction to execution and data at the same time.
An object is a data structure, together with a set of procedures that operate on the data. Basic procedures can be written in an imperative or a functional style, but ultimately there is imperative assignment to state variables in the object.
One major new type of abstraction in OO programming is “generic” programming. It might be that all objects have a procedure called print associated with them. So, we can ask any object to print itself, without having to know how it is implemented. Or, in a graphics system, we might have a variety of different objects that know their x, y positions on the screen. So each of them can be asked, in the same way, to say what their position is, even though they might be represented very differently inside the objects.
In addition, most object-oriented systems support inheritance, which is a way to make new kinds of objects by saying that they are mostly like another kind of object, but with some exceptions. This is another way to take advantage of abstraction.
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Programming languages
Python as well as other modern programming languages, such as Java, Ruby and C++, support all of these programming models. The programmer needs to choose which programming model best suits the task. This is an issue that we will return to throughout the course.

1.4 Summary
We hope that this course will give you a rich set of conceptual tools and practical techniques, as well as an appreciation of how math, modeling, and implementation can work together to enable the design and analysis of complex computational systems that interact with the world.
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Chapter 2
Learning to Program in Python


Depending on your previous programming background, we recommend different paths through the available readings:
If you have never programmed before: you should start with a general introduction to pro­ gramming and Python. We recommend Python for Software Design: How to Think Like a Computer Scientist, by Allen Downey. This is a good introductory text that uses Python to present basic ideas of computer science and programming. It is available for purchase in hardcopy, or as a free download from:•

http://www.greenteapress.com/thinkpython

After that, you can go straight to the next chapter.
If you have programmed before, but not in Python: you should read the rest of this chapter for a quick overview of Python, and how it may differ from other programming languages with which you are familiar.•

· If you have programmed in Python: you should skip to the next chapter.
Everyone should have a bookmark in their browser for Python Tutorial, by Guido Van Rossum. This is the standard tutorial reference by the inventor of Python. It is accessible at:
http://docs.python.org/tut/tut.html

In the rest of this chapter, we will assume you know how to program in some language, but are new to Python. We will use Java as an informal running comparative example. In this section we will cover what we think are the most important differences between Python and what you may already know about programming; but these notes are by no means complete.

2.1 Using Python
Python is designed for easy interaction between a user and the computer. It comes with an inter­ active mode called a listener or shell. The shell gives a prompt (usually something like »>) and waits for you to type in a Python expression or program. Then it will evaluate the expression you entered, and print out the value of the result. So, for example, an interaction with the Python shell might look like this:
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	>>>
	5
	+
	5

	10
	
	
	

	>>>
	x
	=
	6

	>>>
	x
	
	

	6
	
	
	

	>>>
	x
	+
	x

	12
	
	
	

	>>>
	y
	=
	’hi’

	>>>
	y
	+
	y


’hihi’
>>>

So, you can use Python as a fancy calculator. And as you define your own procedures in Python, you can use the shell to test them or use them to compute useful results.

2.1.1 Indentation and line breaks
Every programming language has to have some method for indicating grouping of instructions. Here is how you write an if-then-else structure in Java:
if (s == 1){
s = s + 1; a = a - 10;
} else {
s = s + 10; a = a + 10;
}

The braces specify what statements are executed in the if case. It is considered good style to indent your code to agree with the brace structure, but it is not required. In addition, the semi­ colons are used to indicate the end of a statement, independent of the locations of the line breaks in the file. So, the following code fragment has the same meaning as the previous one, although it is much harder to read and understand.
if (s == 1){
s = s
+ 1;	a = a - 10;
} else {
s = s + 10;
a = a + 10;
}
In Python, on the other hand, there are no braces for grouping or semicolons for termination. Indentation indicates grouping and line breaks indicate statement termination. So, in Python, we would write the previous example as
if s == 1:
s = s + 1 a = a - 10
else:
s = s + 10 a = a + 10


There is no way to put more than one statement on a single line.3 If you have a statement that is too long for a line, you can signal it with a backslash:
aReallyLongVariableNameThatMakesMyLinesLong = \ aReallyLongVariableNameThatMakesMyLinesLong + 1

It is easy for Java programmers to get confused about colons and semi-colons in Python. Here is the deal: (1) Python does not use semi-colons; (2) Colons are used to start an indented block, so they appear on the first line of a procedure definition, when starting a while or for loop, and after the condition in an if, elif, or else.
Is one method better than the other? No. It is entirely a matter of taste. The Python method is pretty unusual. But if you are going to use Python, you need to remember that indentation and line breaks are significant.

2.1.2 Types and declarations
Java programs are what is known as statically and strongly typed. Thus, the types of all the variables must be known at the time that the program is written. This means that variables have to be declared to have a particular type before they are used. It also means that the variables cannot be used in a way that is inconsistent with their type. So, for instance, you would declare x to be an integer by saying
int x;
x = 6 * 7;

But you would get into trouble if you left out the declaration, or did
int x;
x = "thing";

because a type checker is run on your program to make sure that you don’t try to use a variable in a way that is inconsistent with its declaration.
In Python, however, things are a lot more flexible. There are no variable declarations, and the same variable can be used at different points in your program to hold data objects of different types. So, the following is fine, in Python:
if x == 1:
x = 89.3
else:
x = "thing"

The advantage of having type declarations and compile-time type checking, as in Java, is that a compiler can generate an executable version of your program that runs very quickly, because it can be certain about what kind of data is stored in each variable, and it does not have to check it at runtime. An additional advantage is that many programming mistakes can be caught at compile

3 Actually, you can write something like if a > b:	a = a + 1 all on one line, if the work you need to do inside an
if or a for is only one line long.


time, rather than waiting until the program is being run. Java would complain even before your program started to run that it could not evaluate
3 + "hi"

Python would not complain until it was running the program and got to that point.
The advantage of the Python approach is that programs are shorter and cleaner looking, and pos­ sibly easier to write. The flexibility is often useful: In Python, it is easy to make a list or array with objects of different types stored in it. In Java, it can be done, but it is trickier. The disadvantage of the Python approach is that programs tend to be slower. Also, the rigor of compile-time type checking may reduce bugs, especially in large programs.

2.1.3 Modules
As you start to write bigger programs, you will want to keep the procedure definitions in multiple files, grouped together according to what they do. So, for example, we might package a set of utility functions together into a single file, called utility.py. This file is called a module in Python.
Now, if we want to use those procedures in another file, or from the the Python shell, we will need to say
import utility

so that all those procedures become available to us and to the Python interpereter. Now, if we have a procedure in utility.py called foo, we can use it with the name utility.foo. You can read more about modules, and how to reference procedures defined in modules, in the Python documentation.

2.1.4 Interaction and Debugging
We encourage you to adopt an interactive style of programming and debugging. Use the Python shell a lot. Write small pieces of code and test them. It is much easier to test the individual pieces as you go, rather than to spend hours writing a big program, and then find it does not work, and have to sift through all your code, trying to find the bugs.
But, if you find yourself in the (inevitable) position of having a big program with a bug in it, do not despair. Debugging a program does not require brilliance or creativity or much in the way of insight. What it requires is persistence and a systematic approach.
First of all, have a test case (a set of inputs to the procedure you are trying to debug) and know what the answer is supposed to be. To test a program, you might start with some special cases: what if the argument is 0 or the empty list? Those cases might be easier to sort through first (and are also cases that can be easy to get wrong). Then try more general cases.
Now, if your program gets your test case wrong, what should you do? Resist the temptation to start changing your program around, just to see if that will fix the problem. Do not change any code until you know what is wrong with what you are doing now, and therefore believe that the change you make is going to correct the problem.


Ultimately, for debugging big programs, it is most useful to use a software development environ­ ment with a serious debugger. But these tools can sometimes have a steep learning curve, so in this class we will learn to debug systematically using “print” statements.
One good way to use “print” statements to help in debugging is to use a variation on binary search. Find a spot roughly halfway through your code at which you can predict the values of variables, or intermediate results your computation. Put a print statement there that lists expected as well as actual values of the variables. Run your test case, and check. If the predicted values match the actual ones, it is likely that the bug occurs after this point in the code; if they do not, then you have a bug prior to this point (of course, you might have a second bug after this point, but you can find that later). Now repeat the process by finding a location halfway between the beginning of the procedure and this point, placing a print statement with expected and actual values, and continuing. In this way you can narrow down the location of the bug. Study that part of the code and see if you can see what is wrong. If not, add some more print statements near the problematic part, and run it again. Don’t try to be smart. be systematic and indefatigable!
You should learn enough of Python to be comfortable writing basic programs, and to be able to efficiently look up details of the language that you don’t know or have forgotten.

2.2 Procedures
In Python, the fundamental abstraction of a computation is as a procedure (other books call them “functions” instead; we will end up using both terms). A procedure that takes a number as an argument and returns the argument value plus 1 is defined as:
def f(x):
return x + 1

The indentation is important here, too. All of the statements of the procedure have to be indented one level below the def. It is crucial to remember the return statement at the end, if you want your procedure to return a value. So, if you defined f as above, then played with it in the shell,4 you might get something like this:
>>> f
<function f at 0x82570>
>>> f(4) 5
>>> f(f(f(4))) 7

If we just evaluate f, Python tells us it is a function. Then we can apply it to 4 and get 5, or apply it multiple times, as shown.
What if we define


4 Although you can type procedure definitions directly into the shell, you will not want to work that way, because if there is a mistake in your definition, you will have to type the whole thing in again. Instead, you should type your procedure definitions into a file, and then get Python to evaluate them. Look at the documentation for Idle or the 6.01 FAQ for an explanation of how to do that.



def g(x):
x + 1

Now, when we play with it, we might get something like this:
>>> g(4)
>>> g(g(4))
Traceback (most recent call last): File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

What happened!! First, when we evaluated g(4), we got nothing at all, because our definition of g did not return anything. Well...strictly speaking, it returned a special value called None, which the shell does not bother printing out. The value None has a special type, called NoneType. So, then, when we tried to apply g to the result of g(4), it ended up trying to evaluate g(None), which made it try to evaluate None + 1, which made it complain that it did not know how to add something of type NoneType and something of type int.
Whenever you ask Python to do something it cannot do, it will complain. You should learn to read the error messages, because they will give you valuable information about what is wrong with what you were asking.

Print vs Return
Here are two different function definitions:
def f1(x):
print x + 1 def f2(x):
return x + 1

What happens when we call them?
>>> f1(3) 4
>>> f2(3) 4

It looks like they behave in exactly the same way. But they don’t, really. Look at this example:
>>> print(f1(3)) 4
None
>>> print(f2(3)) 4

In the case of f1, the function, when evaluated, prints 4; then it returns the value None, which is printed by the Python shell. In the case of f2, it does not print anything, but it returns 4, which is printed by the Python shell. Finally, we can see the difference here:



>>> f1(3) + 1 4
Traceback (most recent call last): File "<stdin>", line 1, in ?
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’
>>> f2(3) + 1 5

In the first case, the function does not return a value, so there is nothing to add to 1, and an error is generated. In the second case, the function returns the value 4, which is added to 1, and the result, 5, is printed by the Python read-eval-print loop.
The book Think Python, which we recommend reading, was translated from a version for Java, and it has a lot of print statements in it, to illustrate programming concepts. But for just about every­ thing we do, it will be returned values that matter, and printing will be used only for debugging, or to give information to the user.
Print is very useful for debugging. It is important to know that you can print out as many items as you want in one line:
>>> x = 100
>>> print ’x’, x, ’x squared’, x*x, ’xiv’, 14 x 100 x squared 10000 xiv 14

We have also snuck in another data type on you: strings. A string is a sequence of characters. You can create a string using single or double quotes; and access individual elements of strings using indexing.
>>> s1 = ’hello world’
>>> s2 = "hello world"
>>> s1 == s2
True
>>> s1[3]
’l’

As you can see, indexing refers to the extraction of a particular element of a string, by using square brackets [i] where i is a number that identifies the location of the character that you wish to extract (note that the indexing starts with 0 ).
Look in the Python documentation for more about strings.

2.3 Control structures
Python has control structures that are slightly different from those in other languages.

2.3.1 Conditionals

Booleans
Before we talk about conditionals, we need to clarify the Boolean data type. It has values True
and False. Typical expressions that have Boolean values are numerical comparisons:



>>> 7 > 8
False
>>> -6 <= 9
True

We can also test whether data items are equal to one another. Generally we use == to test for equality. It returns True if the two objects have equal values. Sometimes, however, we will be interested in knowing whether the two items are the exact same object (in the sense discussed in section 3.3). In that case we use is:
>>> [1, 2] == [1, 2]
True
>>> [1, 2] is [1, 2]
False
>>> a = [1, 2]
>>> b = [1, 2]
>>> c = a
>>> a == b
True
>>> a is b False
>>> a == c
True
>>> a is c True

Thus, in the examples above, we see that == testing can be applied to nested structures, and basi­ cally returns true if each of the individual elements is the same. However, is testing, especially when applied to nested structures, is more refined, and only returns True if the two objects point to exactly the same instance in memory.
In addition, we can combine Boolean values conveniently using and, or, and not:
>>> 7 > 8 or 8 > 7
True
>>> not 7 > 8 True
>>> 7 == 7 and 8 > 7
True


If
Basic conditional statements have the form:5
if <booleanExpr>:
<statementT1>
...
<statementTk> else:
<statementF1>

5 See the Python documentation for more variations.



...
<statementFn>
When the interpreter encounters a conditional statement, it starts by evaluating <boolean- Expr>, getting either True or False as a result.6 If the result is True, then it will eval­ uate <statementT1>,...,<statementTk>; if it is False, then it will evaluate <state­ mentF1>,...,<statementFn>. Crucially, it always evaluates only one set of the statements.
Now, for example, we can implement a procedure that returns the absolute value of its argument.
def abs(x):
if x >= 0:
return x else:
return -x
We could also have written
def abs(x):
if x >= 0:
result = x else:
result = -x return result

Python uses the level of indentation of the statements to decide which ones go in the groups of statements governed by the conditionals; so, in the example above, the return result statement is evaluated once the conditional is done, no matter which branch of the conditional is evaluated.

For and While
If we want to do some operation or set of operations several times, we can manage the process in several different ways. The most straightforward are for and while statements (often called for and while loops).
A for loop has the following form:
for <var> in <listExpr>:
<statement1>
...
<statementn>
The interpreter starts by evaluating listExpr. If it does not yield a list, tuple, or string7, an error occurs. If it does yield a list or list-like structure, then the block of statements will, under normal circumstances, be executed one time for every value in that list. At the end, the variable <var> will remain bound to the last element of the list (and if it had a useful value before the for was evaluated, that value will have been permanently overwritten).
Here is a basic for loop:

6 In fact, Python will let you put any expression in the place of <booleanExpr>, and it will treat the values 0, 0.0, [], ’’, and None as if they were False and everything else as True.
7 or, more esoterically, another object that can be iterated over.



result = 0
for x in [1, 3, 4]:
result = result + x * x

At the end of this execution, result will have the value 26, and x will have the value 4.
One situation in which the body is not executed once for each value in the list is when a return statement is encountered. No matter whether return is nested in a loop or not, if it is evaluated it immediately causes a value to be returned from a procedure call. So, for example, we might write a procedure that tests to see if an item is a member of a list, and returns True if it is and False if it is not, as follows:
def member(x, items): for i in items:
if x == i:
return True return False

The procedure loops through all of the elements in items, and compares them to x. As soon as it finds an item i that is equal to x, it can quit and return the value True from the procedure. If it gets all the way through the loop without returning, then we know that x is not in the list, and we can return False.
Exercise 2.1.
Write a procedure that takes a list of numbers, nums, and a limit, limit, and returns a list which is the shortest prefix of nums the sum of whose values is greater than limit. Use for. Try to avoid using explicit indexing into the list. (Hint: consider the strategy we used in member.)


Range
Very frequently, we will want to iterate through a list of integers, often as indices. Python provides a useful procedure, range, which returns lists of integers. It can be used in complex ways, but the basic usage is range(n), which returns a list of integers going from 0 up to, but not including, its argument. So range(3) returns [0, 1, 2].
Exercise 2.2.
Write a procedure that takes n as an argument and returns the sum of the squares of the integers from 1 to n-1. It should use for and range.



Exercise 2.3.
What is wrong with this procedure, which is supposed to return True if the element x occurs in the list items, and False otherwise?
def member (x, items): for i in items:
if x == i:
return True else:
return False


While
You should use for whenever you can, because it makes the structure of your loops clear. Some­ times, however, you need to do an operation several times, but you do not know in advance how many times it needs to be done. In such situations, you can use a while statement, of the form:
while <booleanExpr>:
<statement1>
...
<statementn>
In order to evaluate a while statement, the interpreter evaluates <booleanExpr>, getting a Boolean value. If the value is False, it skips all the statements and evaluation moves on to the next statement in the program. If the value is True, then the statements are executed, and the
<booleanExpr> is evaluated again. If it is False, execution of the loop is terminated, and if it is
True, it goes around again.
It will generally be the case that you initialize a variable before the while statement, change that variable in the course of executing the loop, and test some property of that variable in the Boolean expression. Imagine that you wanted to write a procedure that takes an argument n and returns the largest power of 2 that is smaller than n. You might do it like this:
def pow2Smaller(n): p = 1
while p*2 < n: p = p*2
return p

Lists
Python has a built-in list data structure that is easy to use and incredibly convenient. So, for instance, you can say
>>> y = [1, 2, 3]
>>> y[0] 1
>>> y[2] 3
>>> y[-1]



3
>>> y[-2] 2
>>> len(y) 3
>>> y + [4] [1, 2, 3, 4]
>>> [4] + y [4, 1, 2, 3]
>>> [4,5,6] + y [4, 5, 6, 1, 2, 3]
>>> y
[1, 2, 3]

A list is written using square brackets, with entries separated by commas. You can get elements out by specifying the index of the element you want in square brackets, but note that, like for strings, the indexing starts with 0. Note that you can index elements of a list starting from the initial (or zeroth) one (by using integers), or starting from the last one (by using negative integers).
You can add elements to a list using ’+’, taking advantage of Python operator overloading. Note that this operation does not change the original list, but makes a new one.
Another useful thing to know about lists is that you can make slices of them. A slice of a list is sublist; you can get the basic idea from examples.

	>>>
	b = range(10)

	>>>
	b

	[0,
	1, 2,
	3,
	4,
	5,
	6,
	7,
	8, 9]

	>>>
	b[1:]
	
	
	
	
	
	

	[1,
	2, 3,
	4,
	5,
	6,
	7,
	8,
	9]

	>>>
	b[3:]
	
	
	
	
	
	

	[3,
	4, 5,
	6,
	7,
	8,
	9]
	
	

	>>>
	b[:7]
	
	
	
	
	
	

	[0,
	1, 2,
	3,
	4,
	5,
	6]
	
	

	>>>
	b[:-1]
	
	
	
	
	

	[0,
	1, 2, 3,
	4,
	5,
	6,
	7,
	8]

	>>>
	b[:-2]
	
	
	
	
	

	[0,
	1, 2, 3,
	4,
	5,
	6,
	7]
	



Iteration over lists
What if you had a list of integers, and you wanted to add them up and return the sum? Here are a number of different ways of doing it.8


8 For any program you will ever need to write, there will be a huge number of different ways of doing it. How should you choose among them? The most important thing is that the program you write be correct, and so you should choose the approach that will get you to a correct program in the shortest amount of time. That argues for writing it in the way that is cleanest, clearest, shortest. Another benefit of writing code that is clean, clear and short is that you will be better able to understand it when you come back to it in a week or a month or a year, and that other people will also be better able to understand it. Sometimes, you will have to worry about writing a version of a program that runs very quickly, and it might be that in order to make that happen, you will have to write it less cleanly or clearly or briefly. But it is important to have a version that is correct before you worry about getting one that is fast.


First, here is a version in a style you might have learned to write in a Java class (actually, you would have used for, but Python does not have a for that works like the one in C and Java).
def addList1(l): sum = 0
listLength = len(l) i = 0
while (i < listLength): sum = sum + l[i]
i = i + 1 return sum
It increments the index i from 0 through the length of the list - 1, and adds the appropriate element of the list into the sum. This is perfectly correct, but pretty verbose and easy to get wrong.
Here is a version using Python’s for loop.
def addList2(l): sum = 0
for i in range(len(l)): sum = sum + l[i]
return  sum

A loop of the form
for x in l: something
will be executed once for each element in the list l, with the variable x containing each successive element in l on each iteration. So,
for x in range(3): print x
will print 0 1 2. Back to addList2, we see that i will take on values from 0 to the length of the list minus 1, and on each iteration, it will add the appropriate element from l into the sum. This is more compact and easier to get right than the first version, but still not the best we can do!
This one is even more direct.
def addList3(l): sum = 0
for v in l:
sum = sum + v return sum
We do not ever really need to work with the indices. Here, the variable v takes on each successive value in l, and those values are accumulated into sum.
For the truly lazy, it turns out that the function we need is already built into Python. It is called
sum:
def addList4(l): return sum(l)


In section ??, we will see another way to do addList, which many people find more beautiful than the methods shown here.

List Comprehensions
Python has a very nice built-in facility for doing many iterative operations, called list comprehen­ sions. The basic template is
[<resultExpr> for <var> in <listExpr> if <conditionExpr>]

where <var> is a single variable (or a tuple of variables), <listExpr> is an expression that evalu­ ates to a list, tuple, or string, and <resultExpr> is an expression that may use the variable <var>. The if <conditionExpr> is optional; if it is present, then only those values of <var> for which that expression is True are included in the resulting computation.
You can view a list comprehension as a special notation for a particular, very common, class of
for loops. It is equivalent to the following:
*resultVar* = []
for <var> in <listExpr>: if <conditionExpr>:
*resultVar*.append(<resultExpr>)
*resultVar*

We used a kind of funny notation *resultVar* to indicate that there is some anonymous list that is getting built up during the evaluation of the list comprehension, but we have no real way of accessing it. The result is a list, which is obtained by successively binding <var> to elements of the result of evaluating <listExpr>, testing to see whether they meet a condition, and if they meet the condition, evaluating <resultExpr> and collecting the results into a list.
Whew. It is probably easier to understand it by example.
>>> [x/2.0 for x in [4, 5, 6]]
[2.0, 2.5, 3.0]
>>> [y**2 + 3 for y in [1, 10, 1000]]
[4, 103, 1000003]
>>> [a[0] for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],
[’Leslie’,’Kaelbling’]]]
[’Hal’, ’Jacob’, ’Leslie’]
>>> [a[0]+’!’ for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],
[’Leslie’,’Kaelbling’]]] [’Hal!’, ’Jacob!’, ’Leslie!’]

Imagine that you have a list of numbers and you want to construct a list containing just the ones that are odd. You might write
>>> nums = [1, 2, 5, 6, 88, 99, 101, 10000, 100, 37, 101]
>>> [x for x in nums if x%2==1] [1, 5, 99, 101, 37, 101]

Note the use of the if conditional here to include only particular values of x.


And, of course, you can combine this with the other abilities of list comprehensions, to, for exam­ ple, return the squares of the odd numbers:
>>> [x*x for x in nums if x%2==1] [1, 25, 9801, 10201, 1369, 10201]

You can also use structured assignments in list comprehensions
>>> [first for (first, last) in [[’Hal’, ’Abelson’],[’Jacob’,’White’], [’Leslie’,’Kaelbling’]]]
[’Hal’, ’Jacob’, ’Leslie’]
>>> [first+last for (first, last) in [[’Hal’, ’Abelson’],[’Jacob’,’White’], [’Leslie’,’Kaelbling’]]]
[’HalAbelson’, ’JacobWhite’, ’LeslieKaelbling’]

Another built-in function that is useful with list comprehensions is zip. Here are some examples of how it works:
> zip([1, 2, 3],[4, 5, 6])
[(1, 4), (2, 5), (3, 6)]
> zip([1,2], [3, 4], [5, 6])
[(1, 3, 5), (2, 4, 6)]

Here is an example of using zip with a list comprehension:
>>> [first+last for (first, last) in zip([’Hal’, ’Jacob’, ’Leslie’],
[’Abelson’,’White’,’Kaelbling’])] [’HalAbelson’, ’JacobWhite’, ’LeslieKaelbling’]

Note that this last example is very different from this one:
>>> [first+last for first in [’Hal’, ’Jacob’, ’Leslie’] \ for last in [’Abelson’,’White’,’Kaelbling’]]
[’HalAbelson’, ’HalWhite’, ’HalKaelbling’, ’JacobAbelson’, ’JacobWhite’, ’JacobKaelbling’, ’LeslieAbelson’, ’LeslieWhite’, ’LeslieKaelbling’]

Nested list comprehensions behave like nested for loops, the expression in the list comprehen­ sion is evaluated for every combination of the values of the variables.

2.4 Common Errors and Messages
Here are some common Python errors and error messages to watch out for. Please let us know if you have any favorite additions for this list.
· A complaint about NoneType often means you forgot a return.
def plus1 (x): x + 1
>>> y = plus1(x)
>>> plus1(x) + 2
Traceback (most recent call last): File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’


· Weird results from math can result from integer division
>>> 3/ 9
0
“Unsubscriptable object” means you are trying to get an element out of something that isn’t a dictionary, list, or tuple.•

>>> x = 1
>>> x[3]
Traceback (most recent call last): File "<stdin>", line 1, in <module>
TypeError: ’int’ object is unsubscriptable
“Object is not callable” means you are trying to use something that isn’t a procedure or method as if it were.•

>>> x = 1
>>> x(3)
Traceback (most recent call last): File "<stdin>", line 1, in <module>
TypeError: ’int’ object is not callable
“List index out of range” means you are trying to read or write an element of a list that is not present.•

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
>>> a[5]
Traceback (most recent call last): File "<stdin>", line 1, in <module>
IndexError: list index out of range
“Maximum recursion depth exceeded” means you have a recursive procedure that is nested•

very deeply or your base case is not being reached due to a bug.
def fizz(x):
return fizz(x - 1)
>>> fizz(10)
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>", line 2, in fizz File "<stdin>", line 2, in fizz
...
File "<stdin>", line 2, in fizz RuntimeError: maximum recursion depth exceeded
· “Key Error” means that you are trying to look up an element in a dictionary that is not present.
>>> d = {’a’:7, ’b’:8}
>>> d[’c’]
Traceback (most recent call last): File "<stdin>", line 1, in <module>
KeyError: ’c’


Another common error is forgetting the self before calling a method. This generates the same error that you would get if you tried to call a function that wasn’t defined at all.•

Traceback (most recent call last): File "<stdin>", line 1, in <module>
File "V2.py", line 22, in   add 
return add(v)
NameError: global name ’add’ is not defined

2.5 Python Style
Software engineering courses often provide very rigid guidelines on the style of programming, specifying the appropriate amount of indentation, or what to capitalize, or whether to use un­ derscores in variable names. Those things can be useful for uniformity and readability of code, especially when a lot of people are working on a project. But they are mostly arbitrary: a style is chosen for consistency and according to some person’s aesthetic preferences.
There are other matters of style that seem, to us, to be more fundamental, because they directly affect the readability or efficiency of the code.
· Avoid recalculation of the same value.
You should compute it once and assign it to a variable instead; otherwise, if you have a bug in the calculation (or you want to change the program), you will have to change it multiple times. It is also inefficient.
· Avoid repetition of a pattern of computation.
You should use a function instead, again to avoid having to change or debug the same basic code multiple times.
· Avoid numeric indexing.
You should use destructuring if possible, since it is much easier to read the code and therefore easier to get right and to modify later.
· Avoid excessive numeric constants.
You should name the constants, since it is much easier to read the code and therefore easier to get right and to modify later.
Here are some examples of simple procedures that exhibit various flaws. We’ll talk about what makes them problematic.

2.5.1 Normalize a vector
Let’s imagine we want to normalize a vector of three values; that is to compute a new vector of three values, such that its length is 1. Here is our first attempt; it is a procedure that takes as input a list of three numbers, and returns a list of three numbers:
def normalize3(v):
return [v[0]/math.sqrt(v[0]**2+v[1]**2+v[2]**2), v[1]/math.sqrt(v[0]**2+v[1]**2+v[2]**2), v[2]/math.sqrt(v[0]**2+v[1]**2+v[2]**2)]


This is correct, but it looks pretty complicated. Let’s start by noticing that we’re recalculating the denominator three times, and instead save the value in a variable.
def normalize3(v):
magv = math.sqrt(v[0]**2+v[1]**2+v[2]**2) return [v[0]/magv,v[1]/magv,v[2]/magv]

Now, we can see a repeated pattern, of going through and dividing each element by magv. Also, we observe that the computation of the magnitude of a vector is a useful and understandable operation in its own right, and should probably be put in its own procedure. That leads to this procedure:
def mag(v):
return math.sqrt(sum([vi**2 for vi in v]))

def normalize3(v):
return [vi/mag(v) for vi in v]

This is especially nice, because now, in fact, it applies not just to vectors of length three. So, it’s both shorter and more general than what we started with. But, one of our original problems has snuck back in: we’re recomputing mag(v) once for each element of the vector. So, finally, here’s a version that we’re very happy with:9
def mag(v):
return math.sqrt(sum([vi**2 for vi in v]))

def normalize3(v): magv = mag(v)
return [vi/magv for vi in v]


2.5.2 Perimeter of a polygon
Now, let’s consider the problem of computing the length of the perimeter of a polygon. The input is a list of vertices, encoded as a list of lists of two numbers (such as [[1, 2], [3.4, 7.6], [-4.4, 3]]). Here is our first attempt:
def perim(vertices): result = 0
for i in range(len(vertices)-1):
result = result + math.sqrt((vertices[i][0]-vertices[i+1][0])**2 + \
(vertices[i][1]-vertices[i+1][1])**2)  return result + math.sqrt((vertices[-1][0]-vertices[0][0])**2 + \
(vertices[-1][1]-vertices[0][1])**2)


9 Note that there is still something for someone to be unhappy with here: the use of a list comprehension means that we’re creating a new list, which we are just going to sum up; that’s somewhat less efficient than adding the values up in a loop. However, as we said at the outset, for almost every program, clarity matters more than efficiency. And once you have something that’s clear and correct, you can selectively make the parts that are executed frequently more efficient.


Again, this works, but it ain’t pretty. The main problem is that someone reading the code doesn’t immediately see what all that subtraction and squaring is about. We can fix this by defining another procedure:
def perim(vertices): result = 0
for i in range(len(vertices)-1):
result = result + pointDist(vertices[i],vertices[i+1]) return result + pointDist(vertices[-1],vertices[0])

def pointDist(p1,p2):
return math.sqrt(sum([(p1[i] - p2[i])**2 for i in range(len(p1))]))
Now, we’ve defined a new procedure pointDist, which computes the Euclidean distance be­ tween two points. And, in fact, we’ve written it generally enough to work on points of any dimension (not just two). Just for fun, here’s another way to compute the distance, which some people would prefer and others would not.
def pointDist(p1,p2):
return math.sqrt(sum([(c1 - c2)**2 for (c1, c2) in zip(p1, p2)]))
For this to make sense, you have to understand zip. Here’s an example of how it works:
> zip([1, 2, 3],[4, 5, 6])
[(1, 4), (2, 5), (3, 6)]

2.5.3 Bank transfer
What if we have two values, representing bank accounts, and want to transfer an amount of money amt between them? Assume that a bank account is represented as a list of values, such as [’Alyssa’, 8300343.03, 0.05], meaning that ’Alyssa’ has a bank balance of $8,300,343.03, and has to pay a 5-cent fee for every bank transaction. We might write this procedure as follows. It moves the amount from one balance to the other, and subtracts the transaction fee from each account.
def transfer(a1, a2, amt): a1[1] = a1[1] - amt - a1[2]
a2[1] = a2[1] + amt - a2[2]

To understand what it’s doing, you really have to read the code at a detailed level. Furthermore, it’s easy to get the variable names and subscripts wrong.
Here’s another version that abstracts away the common idea of a deposit (which can be positive or negative) into a procedure, and uses it twice:
def transfer(a1, a2, amt): deposit(a1, -amt) deposit(a2, amt)

def deposit(a, amt):
a[1] = a[1] + amt - a[2]


Now, transfer looks pretty clear, but deposit could still use some work. In particular, the use of numeric indices to get the components out of the bank account definition is a bit cryptic (and easy to get wrong).10
def deposit(a, amt):
(name, balance, fee) = a a[1] = balance + amt - fee
Here, we’ve used a destructuring assignment statement to give names to the components of the account. Unfortunately, when we want to change an element of the list representing the account, we still have to index it explicitly. Given that we have to use explicit indices, this approach in which we name them might be better.
acctName = 0
acctBalance = 1
acctFee = 2
def deposit(a, amt):
a[acctBalance] = a[acctBalance] + amt - a[acctFee]
Strive, in your programming, to make your code as simple, clear, and direct as possible. Occa­ sionally, the simple and clear approach will be too inefficient, and you’ll have to do something more complicated. In such cases, you should still start with something clear and simple, and in the end, you can use it as documentation.

2.5.4 Coding examples
Following are some attempts at defining a procedure isSubset, which takes two arguments, a and b, and returns True if a is a subset of b, assuming that a and b are represented as lists of elements.
Here is one solution to the problem which is in the Pythonic functional style.
def isSubset(a, b):
return reduce(operator.and_, [x in b for x in a])
This is short and direct. The expression x in b tests to see if the item x is in the list b. So, [x in b for x in a] is a list of Booleans, one for each element in a, indicating whether that element is in b. Finally, we reduce that list using the and operator11 , which will have the value True if all of the elements of the list are True, and False otherwise.
An alternative is to do it recursively:
def isSubset(a, b): if a == []:
return True else:
return a[0] in b and isSubset(a[1:], b)

10 We’ll see other approaches to this when we start to look at object-oriented programming. But it’s important to apply basic principles of naming and clarity no matter whether you’re using assembly language or Java.
11 To get versions of basic Python operations in the form of procedures, you need to do import operator. Now, you can
do addition with operator.add(3, 4). Because and already has special syntactic significance in Python, they had to name the operator version of it something different, and so it is operator.and_.


The base case of the recursion is that a is the empty list; in that case, it’s clear that a is a subset of
b. Otherwise, we can define our answer in terms of isSubset, but asking a simpler question (in this case, on a list for a which is one element smaller). So, we say that a is a subset of b if the first element of a is a member of b and the set of rest of the elements of a is a subset of b.
We could go even farther in compressing the recursive solution:
def isSubset(a, b):
return a == None or a[0] in b and isSubset(a[1:], b)

Here, we are taking advantage of the fact that in Python (and most other languages), the or oper­ ator has the “early out” property. That is, if we are evaluating e1 or e2, we start by evaluating e1, and if it is True, then we know the result of the expression has to be True, and therefore we return without evaluating e2. So, or can act as a kind of conditional operator. Some people would find this example too abstruse (shorter isn’t always better), and some would find it very beautiful.
Here is another good solution, this time in the imperative style:
def isSubset(a, b): for x in a:
if not x in b: return False
return True

It works by going through the elements in a, in order. If any of those elements is not in b, then we can immediately quit and return False. Otherwise, if we have gotten through all of the elements in a, and each of them has been in b, then a really is a subset of b and we can return True.
Here is another good imperative example:
def isSubset(a, b): result = True for x in a:
result = result and x in b return result

This procedure starts by initializing a result to True, which is the identity element for and (it plays the same role as 0 for add). Then it goes all the way through the list a, and ands the old result with x in b. This computation is very similar to the computation done in the functional version, but rather than creating the whole list of Booleans and then reducing, we interleave the individual membership tests with combining them into a result.
All of these examples are short and clear, and we’d be happy to see you write any of them. How­ ever, there are lots of versions of this procedure that students have written that we are not happy with. Here are some examples of procedures that are correct, in the sense that they return the right answer, but incorrect, in the sense that they are long or confused or hard to read.




Bad	Exampl1e.



def isSubset(a,b): list1=[]
for i in a:
for j in b:
if i==j:
list1.append(i) break
if len(list1)==len(a): return True
else:
return False

This procedure works by going through both lists and making a list of the items that are in common (basically computing the intersection). Then, it checks to see whether the intersection is of the same length as a. There are several problems here:
Using the idea of computing the intersection and then seeing whether•

it is equal to a is a nice idea. But it’s hard to see that’s what this code is doing. Much better would be to make a procedure to compute the intersection, and then call it explicitly and compare the result to a.
Comparing the length of the intersection and the length of a is danger­•

ous. Because we allow repetitions of elements in the lists representing sets, two sets that are equal, in the set sense, may not have the same
length.
The break statement exits one level of the loop you are currently exe­•

cuting. It is often hard to understand and best avoided.
· If you ever find yourself writing:
if condition:
return True else:
return False

You could always replace that with
return condition

which is shorter and clearer.




Bad	Exampl2e.



def isSubset(a,b): itera = 0
okay = True
while itera < len(a): iterb = 0 tempokay = False
while iterb < len(b):
if a[itera] == b[iterb]: tempokay = True
iterb = iterb + 1 if tempokay == False:
okay = False itera = itera + 1
return okay

This procedure is basically iterating over both lists, which is fine, but it is using while rather than for to do so, which makes it hard to follow. We can rewrite it with for:
def isSubset(a,b): okay = True
for itera in range(len(a)): tempokay = False
for iterb in range(len(b)): if a[itera] == b[iterb]:
tempokay = True if tempokay == False:
okay = False return okay

continued



Bad	Exampl3e.	Previous bad example, being made over.
Now, the remaining lack of clarity is in the handling of the Booleans. We can replace





with

if a[itera] == b[iterb]: tempokay = True



tempokay = tempokay or (a[itera] == b[iterb])

which will set tempokay to True if a[itera] == b[iterb], and other­ wise leave it the same. And we can replace
if tempokay == False: okay = False
with
okay = okay and tempokay
It still has the effect that if tempokay is false, then okay will be false, and otherwise it will be as it was before. So, now we have:
def isSubset(a,b): okay = True
for itera in range(len(a)): tempokay = False
for iterb in range(len(b)):
tempokay = tempokay or a[itera] == b[iterb] okay = okay and tempokay
return okay

The logical structure is becoming clearer. It might be even better if we were to write:
def isSubset(a,b): foundAllAsSoFar = True
for itera in range(len(a)): foundThisA = False
for iterb in range(len(b)):
foundThisA = foundThisA or a[itera] == b[iterb] foundAllAsSoFar = foundAllAsSoFar and foundThisA
return okay


Exercise 2.4.
Now, see if you can, first, explain, and then improve this example!
def issubset(a,b):
i = 0
j = 0
while i < len(a): c = False
while j < len(b):
if a[i] == b[j]: c = True
j = j+1 if c:
c = False else:
return False
j = 0
i = i+1 return True


Chapter 3 Programs and Data


Object-oriented programming is a popular way of organizing programs, which groups together data with the procedures that operate on them, thus facilitating some kinds of modularity and abstraction. In the context of our PCAP framework, object-oriented programming will give us methods for capturing common patterns in data and the procedures that operate on that data, via classes, generic functions, and inheritance.
In this chapter, we will try to develop a deep understanding of object-oriented programming by working through the mechanism by which an interpreter evaluates a computer program. The first part of the chapter will focus on interpretation of typical expxressions, starting from the simplest single-statement programs and working up through list structures and procedures. Many of the observations made through this process apply to styles of program organization as well as object- oriented programming. Once we understand how an interpreter evaluates standard expressions, we will move to objects and classes. Although we use Python as an example, the discussion in this chapter is intended to be illustrative of principles of computer languages, more generally.
In many computer languages, including Python, programs are understood and executed by a computer program called an interpreter. Interpreters are surprisingly simple: the rules defining the meaning or semantics of a programming language are typically short and compact; and the in­ terpreter basically encodes these rules and applies them to any legal expressionn in the language. The enormous richness and complexity of computer programs comes from the composition of primitive elements with simple rules. The interpreter, in essence, defines the semantics of the language by capturing the rules governing the value or behavior of program primitives, and of what it means to combine the primitives in various ways. We will study the meaning of computer programs by understanding how the interpreter operates on them.
An interpreter is made up of four pieces:
The reader or tokenizer takes as input a string of characters and divides them into tokens, which are numbers (like -3.42), words (like while or a), and special characters (like :).•

The parser takes as input the string of tokens and understands them as constructs in the pro­ gramming language, such as while loops, procedure definitions, or return statements.•

The evaluator (which is also sometimes called the interpreter, as well) has the really interesting job of determining the value and effects of the program that you ask it to interpret.•

· The printer takes the value returned by the evaluator and prints it out for the user to see.
Programs should never be a mystery to you: you can learn the simple semantic rules of the lan­ guage and, if necessary, simulate what the interpreter would do, in order to understand any com­ puter program which you are facing. Of course, in general, one does not want to work through
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the tedious process of simulating the interpreter, but this foundation of understanding the inter­ preter’s process enables you to reason about the evaluation of any program.

3.1 Primitives, Composition, Abstraction, and Patterns
We will start by thinking about how the PCAP framework applies to computer programs, in general. We can do this by filling in table 3.1, exploring the PCAP ideas in data, procedures, and objects.

Data
The primitive data items in most programming languages are things like integers, floating point numbers, and strings. We can combine these into data structures (we discuss some basic Python data structures in section 3.3) such as lists, arrays, dictionaries and records. Making a data struc­ ture allows us, at the most basic level, to think of a collection of primitive data elements as if it were one thing, freeing us from details. Sometimes, we just want to think of a collection of data, not in terms of its underlying representation, but in terms of what it represents. So, we might want to think of a set of objects, or a family tree, without worrying whether it is an array or a list in its basic representation. Abstract data types provide a way of abstracting away from representational details and allowing us to focus on what the data really means.

Procedures
The primitive procedures of a language are things like built-in numeric operations and basic list operations. We can combine these using the facilities of the language, such as if and while, or by using function composition (f(g(x))). If we want to abstract away from the details of how a particular computation is done, we can define a new function; defining a function allows us to use it for computational jobs without thinking about the details of how those computational jobs get done. You can think of this process as essentially creating a new primitive, which we can then use while ignoring the details of how it is constructed. One way to capture common patterns of abstraction in procedures is to abstract over procedures themselves, with higher-order procedures, which we discuss in detail in section 3.4.6.

Objects
Object-oriented programming provides a number of methods of abstraction and pattern capture in both data and procedures. At the most basic level, objects can be used as records, combining together primitive data elements. More generally, they provide strategies for jointly abstracting a data representation and the procedures that work on it. The features of inheritance and polymor­ phism are particularly important, and we will discuss them in detail later in this chapter.
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	Procedures
	Data

	Primitives
Means of combination
Means of abstraction
	+, *, ==
if, while, f(g(x)) def
	numbers, strings
lists, dictionaries, objects ADTS, classes

	Means of capturing patterns
	higher-order procedures
	generic functions, inheritance


Table 3.1  Primitives, combination, abstraction, patterns framework for computer programs


3.2 Expressions and assignment
We can think of most computer programs as performing some sort of transformation on data. Our program might take as input the exam scores of everyone in the class and generate the average score as output. Or, in a transducer model, we can think about writing the program that takes the current memory state of the transducer and an input, and computes a new memory state and output.
To represent data in a computer, we have to encode it, ultimately as sequences of binary digits (0s and 1s). The memory of a computer is divided into ’words’, which typically hold 32 or 64 bits; a word can be used to store a number, one or several characters, or a pointer to (the address of) another memory location.
A computer program, at the lowest level, is a set of primitive instructions, also encoded into bits and stored in the words of the computer’s memory. These instructions specify operations to be performed on the data (and sometimes the program itself) that are stored in the computer’s memory. In this class, we will not work at the level of these low-level instructions: a high-level programming language such as Python lets us abstract away from these details. But it is important to have an abstract mental model of what is going on within the computer.

3.2.1 Simple expressions
A cornerstone of a programming language is the ability to evaluate expressions. We will start here with arithmetic expressions, just to get the idea. An expression consists of a sequence of ’tokens’ (words, special symbols, or numerals) that represent the application of operators to data elements. Each expression has a value, which can be computed recursively by evaluating primi­ tive expressions, and then using standard rules to combine their values to get new values.
Numerals, such as 6 or -3.7 are primitive expressions, whose values are numeric constants. Their values can be integers, within some fixed range dictated by the programming language, or floating point numbers. Floating point numbers are used to represent non-integer values, but they are different, in many important ways, from the real numbers. There are infinitely many real numbers within a finite interval, but only finitely many floating-point numbers exist at all (because they all must be representable in a fixed number of bits). In fact, the usual laws of real arithmetic (transitivity, associativity, etc.) are violated in floating-point arithmetic, because the results of any given sub-computation may not be representable in the given number of bits.
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We will illustrate the evaluation of expressions in Python by showing short transcripts of interac­ tive sessions with the Python shell : the shell is a computer program that
· Prompts the user for an expression, by typing »>,
· Reads what the user types in, and converts it into a set of tokens,
· Parses the tokens into a data structure representing the syntax of the expression,
· Evaluates the parsed expression using an interpreter, and
· Prints out the resulting value
So, for example, we might have this interaction with Python:

	>>>
	2 + 3

	5
	

	>>>
	(3 * 8) - 2

	22
	

	>>>
	((3 * 8) - 2) / 11

	2
	

	>>>
	2.0

	2.0
	


>>> 0.1
0.10000000000000001
>>> 1.0 / 3.0
0.33333333333333331
>>> 1 / 3
0
There are a couple of things to observe here. First, we can see how floating point numbers only approximately represent real numbers: when we type in 0.1, the closest Python can come to it in floating point is 0.10000000000000001. The last interaction is particularly troubling: it seems like the value of the expression 1 / 3 should be something like 0.33333. However, in Python, if both operands to the / operator are integers, then it will perform an integer division, truncating any remainder.12
These expressions can be arbitrarily deeply nested combinations of primitives. The rules used for evaluation are essentially the same as the ones you learned in school; the interpreter proceeds by applying the operations in precedence order13, evaluating sub-expressions to get new values, and then evaluating the expressions those values participate in, until a single value results.
3.2.2 Variables
We cannot go very far without variables. A variable is a name that we can bind to have a partic­ ular value and then later use in an expression. When a variable is encountered in an expression, it is evaluated by looking to see to what value it is bound.
An interpreter keeps track of which variables are bound to what values in binding environments. An environment specifies a mapping between variable names and values. The values can be inte­ gers, floating-point numbers, characters, or pointers to more complex entities such as procedures or larger collections of data.
Here is an example binding environment:

12 This behavior will no longer be the default in Python 3.0.
13 Please Excuse My Dear Aunt Sally (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction)
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	b
	3

	x
	2.2

	foo
	-1012



Each row represents a binding: the entry in the first column is the variable name and the entry in the second column is the value it to which it is bound.
When you start up the Python shell, you immediately start interacting with a local binding en­ vironment. You can add a binding or change an existing binding by evaluating an assignment statement of the form:
<var> = <expr>
where <var> is a variable name (a string of letters or digits or the character _, not starting with a digit) and <expr> is a Python expression.14
Expressions are always evaluated in some environment.
We might have the following interaction in a fresh Python shell:
>>> a = 3
>>> a 3
>>> b
Traceback (most recent call last): File "<stdin>", line 1, in <module>
NameError: name ’b’ is not defined
>>>
We started by assigning the variable a to have the value 3. That added a binding for a to the local environment.
Next, we evaluated the expression a. The value of an expression with one or more variable names in it cannot be determined unless we know with respect to what environment it is being evaluated. Thus, we will always speak of evaluating expressions in an environment. During the process of evaluating an expression in some environment E, if the interpreter comes to a variable, it looks up that variable in E: if E contains a binding for the variable, then the associated value is returned; if it does not, then an error is generated. In the Python shell interaction above, we can see that the interpreter was able to find a binding for a and return a value, but it was not able to find a binding for b.
Why do we bother defining values for variables? They allow us to re-use an intermediate value in a computation. We might want to compute a formula in two steps, as in:
>>> c = 952**4
>>> c**2 + c / 2.0 6.7467650588636822e+23

14 When we want to talk about the abstract form or syntax of a programming language construct, we will often use meta­ variables, written with angle brackets, like <var>. This is meant to signify that <var> could be any Python variable name, for example.
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They will also play a crucial role in abstraction and the definition of procedures. By giving a name to a value, we can isolate the use of that value in other computations, so that if we decide to change the value, we only have to change the definition (and not change a value several places in the code).
It is fine to reassign the value of a variable; although we use the equality symbol = to stand for assignment, we are not making a mathematical statement of equality. So, for example, we can write:
>>> a = 3
>>> a = a + 1
>>> a 4
Exercise 3.1.
What is the result of evaluating this sequence of assignment statements and the last expression? Determine this by hand-simulating the Python interpreter. Draw an environment and update the stored values as you work through this example.
>>> a = 3
>>> b = a
>>> a = 4
>>> b


3.3 Structured data
We will often want to work with large collections of data. Rather than giving each number its own name, we want to organize the data into natural structures: grocery lists, matrices, sets of employee medical records. In this section, we will explore a simple but enormously useful and flexible data structure, which is conveniently built into Python: the list. The precise details of how lists are represented inside a computer vary from language to language. We will adopt an abstract model in which we think of a list as an ordered sequence of memory locations that contain values. So, for example, in Python, we can express a list of three integers as:
>>> [1, 7, -2]
[1, 7, -2]

which we will draw in an abstract memory diagram as:

	1
	7
	-2



We can assign a list to a variable:
>>> a = [2, 4, 9]


Chapter 3 Programs	and	Data	6.01—	Spring	2011—	April	25, 522011

A binding environment associates a name with a single fixed-size data item. So, if we want to associate a name with a complex structure, we associate the name directly with a ’pointer’ to (actually, the memory address of) the structure. So we can think of a as being bound to a ’pointer’ to the list:
a
2
4
9



Now that we have lists, we have some new kinds of expressions, which let us extract components of a list by specifying their indices. An index of 0 corresponds to the first element of a list. An index of -1 corresponds to the last element (no matter how many elements there are).15 So, if a is bound as above, then we would have:
>>> a[0] 2
>>> a[2] 9
>>> a[-1] 9
>>> a[3]
Traceback (most recent call last): File "<stdin>", line 1, in <module>
IndexError: list index out of range
Note that if we attempt to access an element of the list that is not present (in this case, the fourth element of a three-element list), then an error is generated.
Lists can be nested inside one another. The Python expression:
>>> c = [3, [1], [2, 1], [[4]]]
creates a list that looks, in memory, like this:
1
2
3
1
c
4


It is also possible to have an empty list, which is written in Python as []. We will draw it in our memory diagrams as a small black box. So, for example, this list
>>> z = [3, [], [[]]]
looks like this in memory:

15 See the Python tutorial for much more on list indexing.
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Python has a useful function, len, which takes a list as an argument and returns its length. It does not look inside the elements of the list—it just returns the number of elements at the top level of structure. So, we have
>>> len([1, 2, 3])
3
>>> len([[1, 2, 3]])
1
Exercise 3.2.
Draw a diagram of the binding environment and memory structure after the following statement has been evaluated:
a = [[1], 2, [3, 4]]
Exercise 3.3.
Draw a diagram of the binding environment and memory structure after the following statement has been evaluated:
a = [[[]]]
Exercise 3.4.
Give a Python statement which, when evaluated, would give rise to this memory structure:
What is the value, in this environment, of the following expressions:
· c[1]
· c[-1]
· c[2][1]
2
-2
c
-5
4
1
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3.3.1 List mutation and shared structure
Lists are mutable data structures, which means that we can actually change the values stored in their elements. We do this by using element-selection expressions, like a[1] on the left-hand side of an assignment statement. So, the assignment
a[1] = -3
assigns the second element of a to be -3. In more detail, the left-hand side of this expression evaluates to a pointer to a specific location in memory (just as a’s value is a pointer to a location in memory); then the assignment statement changes the value stored there by inserting the value of the right-hand side of the expression. If that statement were evaluated in this environment,
a
2
4
9



then the resulting environment would be:
a
2
-3
9



We have permanently changed the list named a.
In this section, we will explore the consequences of the mutability of lists; programs that change list structure can become very confusing, but you can always work your way through what is happening by drawing out the memory diagrams.
Continuing the previous example, let us remember that a is bound directly to a pointer to a list (or a sequence of memory cells), and think about what happens if we do:
>>> b = a
Now, a and b are both names for the same list structure, resulting in a memory diagram like this:
b
a
2
-3
9



Now, we can reference parts of the list through b, and even change the list structure that way:
>>> b[0] 2
>>> b[2] = 1


Chapter 3 Programs	and	Data	6.01—	Spring	2011—	April	25, 552011

Notice that, because a and b point to the same list, changing b changes a!
>>> a
[2, -3, 1]

Here is the memory picture now:
b
a
2
-3
1



This situation is called aliasing: the name b has become an alias for a. Aliasing can be useful, but it can also cause problems, because you might inadvertently change b (by passing it into a procedure that changes one of its structured arguments, for example) when it is important to you to keep a unmodified.
Another important way to change a list is to add or delete elements. We will demonstrate adding elements to the end of a list, but see the Python documentation for more operations on lists. This statement
>>> a.append(9)

causes a new element to be added to the end of the list name a. The resulting memory state is:
b
a
2
-3
1
9



As before, because a and b are names for the same list (i.e., they point to the same memory sequence), b is changed too. This is a side effect of the aliasing between a and b:
>>> b
[2, -3, 1, 9]

Often, it will be important to make a fresh copy of a list so that you can change it without affecting the original one. Here are two equivalent ways to make a copy (use whichever one you can remember):
>>> c = list(a)
>>> c = a[:]

Here is a picture of the memory at this point:
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-3
1
9










Now, if we change an element of c, it does not affect a (or b!):c
b
a
2
-3
1
9


>>> c[0] = 100
>>> c
[100, -3, 1, 9]
>>> a
[2, -3, 1, 9]
We can make crazy lists that share structure within a single list:
>>> f = [1, 2, 3]
>>> g = [1, f, [f]]
>>> g
[1, [1, 2, 3], [[1, 2, 3]]]
which results in this memory structure:f
g
1



	1
	2
	3







If you want to add an element to a list and get a new copy at the same time, you can do
>>> a + [1]
The + operator makes a new list that contains the elements of both of its arguments, but does not share any top-level structure. All of our methods of copying only work reliably if your lists do not contain other lists, because it only copies one level of list structure. So, for example, if we did:
>>> h = list(g)
we would end up with this picture:
1
3
2
1
1
h
g
f
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It is clear that if we were to change f, it would change h, so this is not a completely new copy. If you need to copy deep structures, that is, to make a copy not only of the top level list structure, but of the structures of any lists that list contains, and the lists those lists contain, etc., you will need to use the Python copy.deepcopy procedure.Exercise 3.5.
Give a sequence of Python statements which, when evaluated, would give rise to this memory structure:
b
a







	1
	2
	3






Exercise 3.6.
Give a sequence of Python statements which, when evaluated, would give rise to this memory structure:
2
1
3
b
a
Exercise 3.7.
Show the memory structure after this sequence of expressions.
>>> a = [1, 2, 3]
>>> b = [a, a]
>>> a.append(100)

What will be the value of b at this point?
Exercise 3.8.
Show the memory structure after this sequence of expressions.
>>> a = [5, 6]
>>> b = [1, 2]
>>> c = b + a



We will use this “curvy road” symbol to indicate sections of the notes or exercises that are some­ what more difficult and not crucial to understanding the rest of the notes. Feel free to skip them on first reading; but, of course, we think they are cool.16

16 Thanks to Don Knuth’s Art of Computer Programming for the idea of the curvy road sign.
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Exercise 3.9.
Show the memory structure after this sequence of expressions.
>>> a = [1, 2, 3]
>>> a[1] = a

What will be the value of a at this point?


3.3.2 Tuples and strings
Python has two more list-like data types that are important to understand.
A tuple is a structure that is like a list, but is not mutable. You can make new tuples, but you cannot change the contents of a tuple or add elements to it. A tuple is typically written like a list, but with round parentheses instead of square ones:
>>> a = (1, 2, 3)
In fact, it is the commas and not the parentheses that matter here. So, you can write
>>> a = 1, 2, 3
>>> a
(1, 2, 3)
and still get a tuple. The only tricky thing about tuples is making a tuple with a single element. We could try
>>> a = (1)
>>> a 1
but it does not work, because in the expression (1) the parentheses are playing the standard grouping role (and, in fact, because parentheses do not make tuples). So, to make a tuple with a single element, we have to use a comma:
>>> a = 1,
>>> a (1,)
This is a little inelegant, but so it goes.
Tuples will be important in contexts where we are using structured objects as ’keys’, that is, to index into another data structure, and where inconsistencies would occur if those keys could be changed.
An important special kind of tuple is a string. A string can almost be thought of as a tuple of characters. The details of what constitutes a character and how they are encoded is complicated, because modern character sets include characters from nearly all the world’s languages. We will stick to the characters we can type easily on our keyboards. In Python, you can write a string with either single or double quotes: ’abc’ or "abc". You can select parts of it as you would a list:
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>>> s = ’abc’
>>> s[0]
’a’
>>> s[-1]
’c’
The strange thing about this is that s is a string, and because Python has no special data type to represent a single character, s[0] is also a string.
We will frequently use + to concatenate two existing strings to make a new one:
>>> to = ’Jody’
>>> fromP = ’Robin’
>>> letter = ’Dear ’ + to + ",\n It’s over.\n" + fromP
>>> print letter Dear Jody,
It’s over.
Robin
As well as using + to concatenate strings, this example illustrates several other small but impor­ tant points:
You can put a single quote inside a string that is delimited by double-quote characters (and vice versa).•

If you want a new line in your string, you can write \n. Or, if you delimit your string with a•

triple quote, it can go over multiple lines.
· The print statement can be used to print out results in your program.
Python, like most other programming languages, has some reserved words that have special meaning and cannot be used as variables. In this case, we wanted to use from, but that has a special meaning to Python, so we used fromP instead.•


Structured assignment
Once we have lists and tuples, we can use a nice trick in assignment statements, based on the packing and unpacking of tuples.
>>> a, b, c = 1, 2, 3
>>> a 1
>>> b 2
>>> c 3
Or, with lists,
>>> [a, b, c] = [1, 2, 3]
>>> a 1
>>> b 2
>>> c 3
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When you have a list (or a tuple) on the left-hand side of an assignment statement, you have to have a list (or tuple) of matching structure on the right-hand side. Then Python will “unpack” them both, and assign to the individual components of the structure on the left hand side. You can get fancier with this method:
>>> thing = [8, 9, [1, 2], ’John’, [33.3, 44.4]]
>>> [a, b, c, d, [e1, e2]] = thing
>>> c [1, 2]
>>> e1 33.299999999999997


3.4 Procedures
Procedures are computer-program constructs that let us capture common patterns of computation by:
· Gathering together sequences of statements
· Abstracting away from particular data items on which they operate. Here is a procedure definition,17 and then its use:
def square(x): return x * x

>>> square(6) 36
>>> square(2 - square(2)) 4

We will work through, in detail, what happens when the interpreter evaluates a procedure defin­ ition, and then the application of that procedure.

3.4.1	Definition
A procedure definition has the abstract form:
def <name>(<fp1>, ..., <fpn>):
<statement1>
...
<statementk>

There are essentially three parts:



17 In the code displayed in these notes, we will show procedures being defined and then used, as if the definitions were happening in the Python shell (but without the prompts). In fact, you should not type procedure definitions into the shell, because if you make a mistake, you will have to re-type the whole thing, and because multi-line objects are not handled very well. Instead, type your procedure definitions into a file in Idle, and then test them by ’running’ the file in Idle (which will actually evaluate all of the expressions in your file) and then evaluating test expressions in Idle’s shell.
image6.png




image7.png




image8.png




image9.png




image10.png




image11.png




image12.png




image13.png




image14.png




image15.png




image16.png




image17.png




image18.png




image19.png




image20.png




image21.png




image22.png




image23.png




image24.png




image25.png




image26.png




image27.png




image28.png




image29.png




image30.png




image31.png




image32.png




image1.png




image33.png




image34.png




image35.png




image36.png




image37.png




image38.png




image39.png




image40.png
>
P




image41.png
N




image2.png




image42.png




image43.png




image44.png




image45.png




image46.png




image47.png




image48.png




image49.png




image50.png
| N




image3.png




image51.png




image52.png




image53.png




image54.png




image55.png




image56.png




image57.jpeg




image4.png




image5.png




