Dataset Viewer
Auto-converted to Parquet
SMILES
stringlengths
14
103
Ki
float64
-5
1.22
NC(=O)Nc1sc(-c2ccc(F)cc2)cc1C(N)=O
-0.69897
O[C@H]1CC[C@H](Nc2ccc3nnc(-c4cccc(C(F)(F)F)c4)n3n2)CC1
-3.380211
c1ccc(-c2ncnc3[nH]ccc23)cc1
-2.683947
Clc1cnc2[nH]cc(-c3ccccc3)c2c1
-2.414973
CCC1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.230449
CC(C)CC1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.531479
CC(C)C1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.30103
CC(C)(C)C1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.322219
COC(=O)CC1Nc2ccccc2-c2ccnc3[nH]cc1c23
-2.662758
c1ccc2c(c1)NCc1c[nH]c3nccc-2c13
-2.875061
c1ccc2c(c1)NC(C1CCCCC1)c1c[nH]c3nccc-2c13
-3.462398
c1ccc(COCC2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3.255273
c1ccc(CC2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3
OCCCCC1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.380211
OCCCC1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.380211
c1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-2.568202
Fc1ccccc1C1Nc2ccccc2-c2ccnc3[nH]cc1c23
-2.342423
Fc1cccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c1
-2.30103
Fc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-2.690196
Fc1cccc(F)c1C1Nc2ccccc2-c2ccnc3[nH]cc1c23
-2.113943
Fc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c(F)c1
-2.322219
Fc1ccc(F)c(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c1F
-1.748188
Fc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c(F)c1F
-2.447158
Oc1ccccc1C1Nc2ccccc2-c2ccnc3[nH]cc1c23
-3.041393
Oc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-0.20412
Oc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1F
0.30103
Oc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c(F)c1
0.221849
OB(O)c1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-1.113943
Oc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)c(Cl)c1
-0.60206
Oc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1Br
-0.30103
COc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-1.623249
OCc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-0.477121
Nc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-1.851258
CS(=O)(=O)Nc1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3.322219
O=C(O)c1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3.491362
CNC(=O)c1ccc(C2Nc3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3.623249
c1ccc2c(c1)NC(c1ccncc1)c1c[nH]c3nccc-2c13
-3.113943
c1ccc(C2Nc3ccccc3-c3ncnc4[nH]cc2c34)cc1
-3.579784
Fc1cccc(C2Nc3ccccc3-c3ncnc4[nH]cc2c34)c1
-3.176091
Oc1ccc(C2Nc3ccccc3-c3ncnc4[nH]cc2c34)c(F)c1
-0
Oc1ccc(C2Nc3ccccc3-c3ncnc4[nH]cc2c34)cc1F
-0
Oc1ccc(C2=Nc3ccccc3-c3ncnc4[nH]cc2c34)c(Cl)c1
0.09691
OCCCCC1=Nc2ccccc2-c2ncnc3[nH]cc1c23
-2.60206
O=C1c2ccccc2C2c3c[nH]c4nccc(c34)-c3ccccc3N12
-3.653213
COC(=O)C1(c2ccc([N+](=O)[O-])cc2)Nc2ccccc2-c2ccnc3[nH]cc1c23
-2.322219
COC(=O)C1(c2ccc(O)c(F)c2)Nc2ccccc2-c2ccnc3[nH]cc1c23
-1.462398
COC(=O)C1(c2ccc(O)cc2)Nc2ccccc2-c2ccnc3[nH]cc1c23
-2.322219
CCOC(=O)C1(c2ccc(O)cc2)Nc2ccccc2-c2ncnc3[nH]cc1c23
-2.799341
O=C1NC(c2ccc(O)cc2F)c2c[nH]c3nccc(c23)-c2ccccc21
-1.531479
COc1ccc(C2NC(=O)c3ccccc3-c3ccnc4[nH]cc2c34)cc1
-3.579784
COc1ccncc1C1=NNC(=O)/C1=N\Nc1ccccc1
-3.544068
CCCc1cn(-c2ccc3[nH]ncc3c2)nn1
-2.878522
OCCCc1cn(-c2ccc3[nH]ncc3c2)nn1
-3.162266
c1cc2[nH]ncc2cc1-n1cc(C2CC2)nn1
-3.162266
c1cc2[nH]ncc2cc1-n1cc(C2CCCC2)nn1
-2.898176
c1cc2[nH]ncc2cc1-n1cc(CC2CCCCC2)nn1
-2.448706
c1ccc(CCc2cn(-c3ccc4[nH]ncc4c3)nn2)cc1
-2.953276
c1ccc(CCCc2cn(-c3ccc4[nH]ncc4c3)nn2)cc1
-2.808886
c1cc2[nH]ncc2cc1-c1c[nH]nn1
-3.162266
Clc1cccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)c1
-3.161368
Nc1n[nH]c2ccc(-c3cc(Cc4ccccc4)no3)cc12
-1.20412
CCCc1cc(-c2ccc3[nH]ncc3c2)on1
-2.683047
CNc1cncc(-c2c[nH]c(=O)c(NC(=O)c3ccc(N4CCC[C@H]4CN4CCCC4)cc3)c2)n1
-2.568202
Nc1nc(Nc2cc(N3CCOCC3)ccc2F)nn1-c1ccccn1
-2.770852
COc1ccc(Nc2nc(N)n(-c3ccccn3)n2)cc1OC
-1.826075
Cc1cccc(-c2[nH]c(-c3ccnc(N)n3)cc2C(N)=O)c1C
-3.100002
CC(Oc1cc(-c2cnn(C3CCNCC3)c2)cnc1N)c1c(Cl)ccc(F)c1Cl
-2
N#CCOc1ccc(Nc2nc(Nc3cccc(S(N)(=O)=O)c3)ncc2Br)cc1
0.100015
COc1cccc(C(=O)Nc2n[nH]c3ccc(-c4cn(Cc5ccccc5)nn4)cc23)c1
-2.900001
Cc1cc(N2CCOCC2)cc2[nH]c(-c3c(NCC(O)c4cccc(Cl)c4)cc[nH]c3=O)nc12
-0.599992
CC(=O)Nc1c(C(N)=O)sc2ccc(Cl)c(Cl)c12
-2.900001
NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)c1)Cc1ccccc1
-1.800029
NC1CCC(Nc2nccc(-c3c[nH]c4ncccc34)n2)CC1
-2.400002
NC1CCCCC1Nc1nccc(-c2c[nH]c3ncccc23)n1
-2.900001
O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3cn[nH]c3c2)n1
-1.499962
OC1CCC(Nc2nc(Cl)cc(-c3c[nH]c4ncccc34)n2)CC1
-2.300008
CCn1c(C)c(-c2ccnc(Nc3cccc(OC)c3)n2)sc1=O
-1.899985
CC(C)(CNc1cc(-c2c[nH]c3ncccc23)cc(Cl)n1)CNS(C)(=O)=O
-3.400001
Fc1ccc(-c2ccc3nccn3n2)cn1
-5
CN1c2ccc(N)cc2C(c2ccccc2)c2cc(N)ccc21
-3
OCCNc1cc2cc(-c3cccnc3)ccc2cn1
-3.100002
Nc1n[nH]c2ncc(Br)cc12
-4
CCCCN(CCC#N)C(=O)c1ccc2nc(-c3n[nH]c4ccccc34)[nH]c2c1
-2
C=CCn1c(=O)c2cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc2n1-c1cccc(C(C)(C)O)n1
-3.100002
NS(=O)(=O)c1cccc(Nc2ncc3ccn(-c4ccccc4)c3n2)c1
-1.100026
CCOC(=O)Cc1nc2c3cc(Br)ccc3[nH]c(=O)n2n1
-3.400001
COc1ccc2c(c1)C(=Cc1c[nH]cn1)C(=O)N2
-2.700002
CCN1CCN(c2ccc(Nc3ncc(Cl)c(Nc4ccc5[nH]ncc5c4)n3)cc2)CC1
-0.40002
Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2cc(C#N)ccc21
-2.700002
O=C1NCCc2[nH]c(-c3ccnc(C=Cc4ccccc4)c3)cc21
-2.800002
Cc1cccc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1
-2.800002
Cc1ccnc2[nH]c3cc(C(C)C)ccc3c(=O)c12
-2.800002
CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)ccn1
-2.800002
Nc1ncnc2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12
-2.200002
N#Cc1ccc2nc(N)n(-c3nc4c(s3)CCCC4)c2c1
-3.400001
Nc1n[nH]c2ccc(-c3nnn(Cc4ccccc4)c3I)cc12
-1.100026
COCOc1cccc(OCOC)c1-c1ccc(NS(C)(=O)=O)cc1C(=O)OC
-3.299999
COc1ccc(C2=NNc3cccc4c(OC)ccc2c34)cc1OC
-3
CNC(=O)COc1ccc(Nc2nc(Nc3ccc(C)c(S(N)(=O)=O)c3)ncc2F)cc1
-1.299943
CC(=O)Nc1cccc(CNc2c(Nc3ccc4[nH]ncc4c3)c(=O)c2=O)c1
-2.600003
End of preview. Expand in Data Studio

MoleculeACE ChEMBL2971 Ki

ChEMBL2971 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the Tyrosine-protein kinase jak2 target.

Characteristic Description
Tasks 1
Task type regression
Total samples 976
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
63