refactor JGLUE.py (#5)
Browse files* refactor JGLUE.py
* fix for the CI
JGLUE.py
CHANGED
|
@@ -6,6 +6,7 @@ from typing import Dict, List, Optional, Union
|
|
| 6 |
|
| 7 |
import datasets as ds
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
|
| 10 |
_CITATION = """\
|
| 11 |
@inproceedings{kurihara-etal-2022-jglue,
|
|
@@ -80,7 +81,7 @@ _URLS = {
|
|
| 80 |
}
|
| 81 |
|
| 82 |
|
| 83 |
-
def
|
| 84 |
features = ds.Features(
|
| 85 |
{
|
| 86 |
"sentence_pair_id": ds.Value("string"),
|
|
@@ -90,10 +91,16 @@ def features_jsts() -> ds.Features:
|
|
| 90 |
"label": ds.Value("float"),
|
| 91 |
}
|
| 92 |
)
|
| 93 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
|
| 96 |
-
def
|
| 97 |
features = ds.Features(
|
| 98 |
{
|
| 99 |
"sentence_pair_id": ds.Value("string"),
|
|
@@ -105,10 +112,17 @@ def features_jnli() -> ds.Features:
|
|
| 105 |
),
|
| 106 |
}
|
| 107 |
)
|
| 108 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
-
def
|
| 112 |
features = ds.Features(
|
| 113 |
{
|
| 114 |
"id": ds.Value("string"),
|
|
@@ -121,10 +135,24 @@ def features_jsquad() -> ds.Features:
|
|
| 121 |
"is_impossible": ds.Value("bool"),
|
| 122 |
}
|
| 123 |
)
|
| 124 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
-
def
|
| 128 |
features = ds.Features(
|
| 129 |
{
|
| 130 |
"q_id": ds.Value("int64"),
|
|
@@ -134,13 +162,22 @@ def features_jcommonsenseqa() -> ds.Features:
|
|
| 134 |
"choice2": ds.Value("string"),
|
| 135 |
"choice3": ds.Value("string"),
|
| 136 |
"choice4": ds.Value("string"),
|
| 137 |
-
"label": ds.
|
|
|
|
|
|
|
|
|
|
| 138 |
}
|
| 139 |
)
|
| 140 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
-
def
|
| 144 |
features = ds.Features(
|
| 145 |
{
|
| 146 |
"sentence": ds.Value("string"),
|
|
@@ -150,7 +187,13 @@ def features_marc_ja() -> ds.Features:
|
|
| 150 |
"review_id": ds.Value("string"),
|
| 151 |
}
|
| 152 |
)
|
| 153 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
class MarcJaConfig(ds.BuilderConfig):
|
|
@@ -439,60 +482,118 @@ class JGLUE(ds.GeneratorBasedBuilder):
|
|
| 439 |
|
| 440 |
def _info(self) -> ds.DatasetInfo:
|
| 441 |
if self.config.name == "JSTS":
|
| 442 |
-
|
| 443 |
elif self.config.name == "JNLI":
|
| 444 |
-
|
| 445 |
elif self.config.name == "JSQuAD":
|
| 446 |
-
|
| 447 |
elif self.config.name == "JCommonsenseQA":
|
| 448 |
-
|
| 449 |
elif self.config.name == "MARC-ja":
|
| 450 |
-
|
| 451 |
else:
|
| 452 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
-
def
|
| 463 |
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
|
|
|
| 465 |
if self.config.name == "MARC-ja":
|
| 466 |
-
|
| 467 |
-
label_conv_review_id_list = file_paths["label_conv_review_id_list"]
|
| 468 |
-
|
| 469 |
-
split_dfs = preprocess_for_marc_ja(
|
| 470 |
-
config=self.config,
|
| 471 |
-
data_file_path=file_paths["data"],
|
| 472 |
-
filter_review_id_list_paths=filter_review_id_list,
|
| 473 |
-
label_conv_review_id_list_paths=label_conv_review_id_list,
|
| 474 |
-
)
|
| 475 |
-
return [
|
| 476 |
-
ds.SplitGenerator(
|
| 477 |
-
name=ds.Split.TRAIN,
|
| 478 |
-
gen_kwargs={"split_df": split_dfs["train"]},
|
| 479 |
-
),
|
| 480 |
-
ds.SplitGenerator(
|
| 481 |
-
name=ds.Split.VALIDATION,
|
| 482 |
-
gen_kwargs={"split_df": split_dfs["valid"]},
|
| 483 |
-
),
|
| 484 |
-
]
|
| 485 |
else:
|
| 486 |
-
return
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
def _generate_examples(
|
| 498 |
self,
|
|
@@ -500,46 +601,13 @@ class JGLUE(ds.GeneratorBasedBuilder):
|
|
| 500 |
split_df: Optional[pd.DataFrame] = None,
|
| 501 |
):
|
| 502 |
if self.config.name == "MARC-ja":
|
| 503 |
-
|
| 504 |
-
raise ValueError(f"Invalid preprocessing for {self.config.name}")
|
| 505 |
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
|
|
|
|
|
|
| 509 |
|
| 510 |
else:
|
| 511 |
-
|
| 512 |
-
raise ValueError(f"Invalid argument for {self.config.name}")
|
| 513 |
-
|
| 514 |
-
if self.config.name == "JSQuAD":
|
| 515 |
-
with open(file_path, "r") as rf:
|
| 516 |
-
json_data = json.load(rf)
|
| 517 |
-
|
| 518 |
-
for json_dict in json_data["data"]:
|
| 519 |
-
title = json_dict["title"]
|
| 520 |
-
paragraphs = json_dict["paragraphs"]
|
| 521 |
-
for paragraph in paragraphs:
|
| 522 |
-
context = paragraph["context"]
|
| 523 |
-
questions = paragraph["qas"]
|
| 524 |
-
for question_dict in questions:
|
| 525 |
-
q_id = question_dict["id"]
|
| 526 |
-
question = question_dict["question"]
|
| 527 |
-
answers = question_dict["answers"]
|
| 528 |
-
is_impossible = question_dict["is_impossible"]
|
| 529 |
-
|
| 530 |
-
example_dict = {
|
| 531 |
-
"id": q_id,
|
| 532 |
-
"title": title,
|
| 533 |
-
"context": context,
|
| 534 |
-
"question": question,
|
| 535 |
-
"answers": answers,
|
| 536 |
-
"is_impossible": is_impossible,
|
| 537 |
-
}
|
| 538 |
-
|
| 539 |
-
yield q_id, example_dict
|
| 540 |
-
|
| 541 |
-
else:
|
| 542 |
-
with open(file_path, "r") as rf:
|
| 543 |
-
for i, line in enumerate(rf):
|
| 544 |
-
json_dict = json.loads(line)
|
| 545 |
-
yield i, json_dict
|
|
|
|
| 6 |
|
| 7 |
import datasets as ds
|
| 8 |
import pandas as pd
|
| 9 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
| 10 |
|
| 11 |
_CITATION = """\
|
| 12 |
@inproceedings{kurihara-etal-2022-jglue,
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
|
| 84 |
+
def dataset_info_jsts() -> ds.Features:
|
| 85 |
features = ds.Features(
|
| 86 |
{
|
| 87 |
"sentence_pair_id": ds.Value("string"),
|
|
|
|
| 91 |
"label": ds.Value("float"),
|
| 92 |
}
|
| 93 |
)
|
| 94 |
+
return ds.DatasetInfo(
|
| 95 |
+
description=_DESCRIPTION,
|
| 96 |
+
citation=_CITATION,
|
| 97 |
+
homepage=_HOMEPAGE,
|
| 98 |
+
license=_LICENSE,
|
| 99 |
+
features=features,
|
| 100 |
+
)
|
| 101 |
|
| 102 |
|
| 103 |
+
def dataset_info_jnli() -> ds.Features:
|
| 104 |
features = ds.Features(
|
| 105 |
{
|
| 106 |
"sentence_pair_id": ds.Value("string"),
|
|
|
|
| 112 |
),
|
| 113 |
}
|
| 114 |
)
|
| 115 |
+
return ds.DatasetInfo(
|
| 116 |
+
description=_DESCRIPTION,
|
| 117 |
+
citation=_CITATION,
|
| 118 |
+
homepage=_HOMEPAGE,
|
| 119 |
+
license=_LICENSE,
|
| 120 |
+
features=features,
|
| 121 |
+
supervised_keys=None,
|
| 122 |
+
)
|
| 123 |
|
| 124 |
|
| 125 |
+
def dataset_info_jsquad() -> ds.Features:
|
| 126 |
features = ds.Features(
|
| 127 |
{
|
| 128 |
"id": ds.Value("string"),
|
|
|
|
| 135 |
"is_impossible": ds.Value("bool"),
|
| 136 |
}
|
| 137 |
)
|
| 138 |
+
return ds.DatasetInfo(
|
| 139 |
+
description=_DESCRIPTION,
|
| 140 |
+
citation=_CITATION,
|
| 141 |
+
homepage=_HOMEPAGE,
|
| 142 |
+
license=_LICENSE,
|
| 143 |
+
features=features,
|
| 144 |
+
supervised_keys=None,
|
| 145 |
+
task_templates=[
|
| 146 |
+
QuestionAnsweringExtractive(
|
| 147 |
+
question_column="question",
|
| 148 |
+
context_column="context",
|
| 149 |
+
answers_column="answers",
|
| 150 |
+
)
|
| 151 |
+
],
|
| 152 |
+
)
|
| 153 |
|
| 154 |
|
| 155 |
+
def dataset_info_jcommonsenseqa() -> ds.Features:
|
| 156 |
features = ds.Features(
|
| 157 |
{
|
| 158 |
"q_id": ds.Value("int64"),
|
|
|
|
| 162 |
"choice2": ds.Value("string"),
|
| 163 |
"choice3": ds.Value("string"),
|
| 164 |
"choice4": ds.Value("string"),
|
| 165 |
+
"label": ds.ClassLabel(
|
| 166 |
+
num_classes=5,
|
| 167 |
+
names=["choice0", "choice1", "choice2", "choice3", "choice4"],
|
| 168 |
+
),
|
| 169 |
}
|
| 170 |
)
|
| 171 |
+
return ds.DatasetInfo(
|
| 172 |
+
description=_DESCRIPTION,
|
| 173 |
+
citation=_CITATION,
|
| 174 |
+
homepage=_HOMEPAGE,
|
| 175 |
+
license=_LICENSE,
|
| 176 |
+
features=features,
|
| 177 |
+
)
|
| 178 |
|
| 179 |
|
| 180 |
+
def dataset_info_marc_ja() -> ds.Features:
|
| 181 |
features = ds.Features(
|
| 182 |
{
|
| 183 |
"sentence": ds.Value("string"),
|
|
|
|
| 187 |
"review_id": ds.Value("string"),
|
| 188 |
}
|
| 189 |
)
|
| 190 |
+
return ds.DatasetInfo(
|
| 191 |
+
description=_DESCRIPTION,
|
| 192 |
+
citation=_CITATION,
|
| 193 |
+
homepage=_HOMEPAGE,
|
| 194 |
+
license=_LICENSE,
|
| 195 |
+
features=features,
|
| 196 |
+
)
|
| 197 |
|
| 198 |
|
| 199 |
class MarcJaConfig(ds.BuilderConfig):
|
|
|
|
| 482 |
|
| 483 |
def _info(self) -> ds.DatasetInfo:
|
| 484 |
if self.config.name == "JSTS":
|
| 485 |
+
return dataset_info_jsts()
|
| 486 |
elif self.config.name == "JNLI":
|
| 487 |
+
return dataset_info_jnli()
|
| 488 |
elif self.config.name == "JSQuAD":
|
| 489 |
+
return dataset_info_jsquad()
|
| 490 |
elif self.config.name == "JCommonsenseQA":
|
| 491 |
+
return dataset_info_jcommonsenseqa()
|
| 492 |
elif self.config.name == "MARC-ja":
|
| 493 |
+
return dataset_info_marc_ja()
|
| 494 |
else:
|
| 495 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
| 496 |
|
| 497 |
+
def __split_generators_marc_ja(self, dl_manager: ds.DownloadManager):
|
| 498 |
+
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
| 499 |
+
|
| 500 |
+
filter_review_id_list = file_paths["filter_review_id_list"]
|
| 501 |
+
label_conv_review_id_list = file_paths["label_conv_review_id_list"]
|
| 502 |
+
|
| 503 |
+
split_dfs = preprocess_for_marc_ja(
|
| 504 |
+
config=self.config,
|
| 505 |
+
data_file_path=file_paths["data"],
|
| 506 |
+
filter_review_id_list_paths=filter_review_id_list,
|
| 507 |
+
label_conv_review_id_list_paths=label_conv_review_id_list,
|
| 508 |
)
|
| 509 |
+
return [
|
| 510 |
+
ds.SplitGenerator(
|
| 511 |
+
name=ds.Split.TRAIN,
|
| 512 |
+
gen_kwargs={"split_df": split_dfs["train"]},
|
| 513 |
+
),
|
| 514 |
+
ds.SplitGenerator(
|
| 515 |
+
name=ds.Split.VALIDATION,
|
| 516 |
+
gen_kwargs={"split_df": split_dfs["valid"]},
|
| 517 |
+
),
|
| 518 |
+
]
|
| 519 |
|
| 520 |
+
def __split_generators(self, dl_manager: ds.DownloadManager):
|
| 521 |
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
| 522 |
+
return [
|
| 523 |
+
ds.SplitGenerator(
|
| 524 |
+
name=ds.Split.TRAIN,
|
| 525 |
+
gen_kwargs={"file_path": file_paths["train"]},
|
| 526 |
+
),
|
| 527 |
+
ds.SplitGenerator(
|
| 528 |
+
name=ds.Split.VALIDATION,
|
| 529 |
+
gen_kwargs={"file_path": file_paths["valid"]},
|
| 530 |
+
),
|
| 531 |
+
]
|
| 532 |
|
| 533 |
+
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 534 |
if self.config.name == "MARC-ja":
|
| 535 |
+
return self.__split_generators_marc_ja(dl_manager)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
else:
|
| 537 |
+
return self.__split_generators(dl_manager)
|
| 538 |
+
|
| 539 |
+
def __generate_examples_marc_ja(self, split_df: Optional[pd.DataFrame] = None):
|
| 540 |
+
if split_df is None:
|
| 541 |
+
raise ValueError(f"Invalid preprocessing for {self.config.name}")
|
| 542 |
+
|
| 543 |
+
instances = split_df.to_dict(orient="records")
|
| 544 |
+
for i, data_dict in enumerate(instances):
|
| 545 |
+
yield i, data_dict
|
| 546 |
+
|
| 547 |
+
def __generate_examples_jsquad(self, file_path: Optional[str] = None):
|
| 548 |
+
if file_path is None:
|
| 549 |
+
raise ValueError(f"Invalid argument for {self.config.name}")
|
| 550 |
+
|
| 551 |
+
with open(file_path, "r") as rf:
|
| 552 |
+
json_data = json.load(rf)
|
| 553 |
+
|
| 554 |
+
for json_dict in json_data["data"]:
|
| 555 |
+
title = json_dict["title"]
|
| 556 |
+
paragraphs = json_dict["paragraphs"]
|
| 557 |
+
|
| 558 |
+
for paragraph in paragraphs:
|
| 559 |
+
context = paragraph["context"]
|
| 560 |
+
questions = paragraph["qas"]
|
| 561 |
+
|
| 562 |
+
for question_dict in questions:
|
| 563 |
+
q_id = question_dict["id"]
|
| 564 |
+
question = question_dict["question"]
|
| 565 |
+
answers = question_dict["answers"]
|
| 566 |
+
is_impossible = question_dict["is_impossible"]
|
| 567 |
+
|
| 568 |
+
example_dict = {
|
| 569 |
+
"id": q_id,
|
| 570 |
+
"title": title,
|
| 571 |
+
"context": context,
|
| 572 |
+
"question": question,
|
| 573 |
+
"answers": answers,
|
| 574 |
+
"is_impossible": is_impossible,
|
| 575 |
+
}
|
| 576 |
+
|
| 577 |
+
yield q_id, example_dict
|
| 578 |
+
|
| 579 |
+
def __generate_examples_jcommonsenseqa(self, file_path: Optional[str] = None):
|
| 580 |
+
if file_path is None:
|
| 581 |
+
raise ValueError(f"Invalid argument for {self.config.name}")
|
| 582 |
+
|
| 583 |
+
with open(file_path, "r") as rf:
|
| 584 |
+
for i, line in enumerate(rf):
|
| 585 |
+
json_dict = json.loads(line)
|
| 586 |
+
json_dict["label"] = f"choice{json_dict['label']}"
|
| 587 |
+
yield i, json_dict
|
| 588 |
+
|
| 589 |
+
def __generate_examples(self, file_path: Optional[str] = None):
|
| 590 |
+
if file_path is None:
|
| 591 |
+
raise ValueError(f"Invalid argument for {self.config.name}")
|
| 592 |
+
|
| 593 |
+
with open(file_path, "r") as rf:
|
| 594 |
+
for i, line in enumerate(rf):
|
| 595 |
+
json_dict = json.loads(line)
|
| 596 |
+
yield i, json_dict
|
| 597 |
|
| 598 |
def _generate_examples(
|
| 599 |
self,
|
|
|
|
| 601 |
split_df: Optional[pd.DataFrame] = None,
|
| 602 |
):
|
| 603 |
if self.config.name == "MARC-ja":
|
| 604 |
+
yield from self.__generate_examples_marc_ja(split_df)
|
|
|
|
| 605 |
|
| 606 |
+
elif self.config.name == "JSQuAD":
|
| 607 |
+
yield from self.__generate_examples_jsquad(file_path)
|
| 608 |
+
|
| 609 |
+
elif self.config.name == "JCommonsenseQA":
|
| 610 |
+
yield from self.__generate_examples_jcommonsenseqa(file_path)
|
| 611 |
|
| 612 |
else:
|
| 613 |
+
yield from self.__generate_examples(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|