[WIP] update for MARC-ja
Browse files- JGLUE.py +276 -0
- tests/JGLUE_test.py +18 -0
JGLUE.py
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import datasets as ds
|
|
|
|
| 4 |
|
| 5 |
_CITATION = """\
|
| 6 |
@inproceedings{kurihara-etal-2022-jglue,
|
|
@@ -39,6 +44,7 @@ This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Intern
|
|
| 39 |
"""
|
| 40 |
|
| 41 |
_DESCRIPTION_CONFIGS = {
|
|
|
|
| 42 |
"JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
|
| 43 |
"JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
|
| 44 |
"JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
|
|
@@ -46,6 +52,11 @@ _DESCRIPTION_CONFIGS = {
|
|
| 46 |
}
|
| 47 |
|
| 48 |
_URLS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
"JSTS": {
|
| 50 |
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
|
| 51 |
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
|
|
@@ -129,9 +140,259 @@ def features_jcommonsenseqa() -> ds.Features:
|
|
| 129 |
return features
|
| 130 |
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
class JGLUE(ds.GeneratorBasedBuilder):
|
| 133 |
VERSION = ds.Version("1.1.0")
|
| 134 |
BUILDER_CONFIGS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
ds.BuilderConfig(
|
| 136 |
name="JSTS",
|
| 137 |
version=VERSION,
|
|
@@ -163,6 +424,8 @@ class JGLUE(ds.GeneratorBasedBuilder):
|
|
| 163 |
features = features_jsquad()
|
| 164 |
elif self.config.name == "JCommonsenseQA":
|
| 165 |
features = features_jcommonsenseqa()
|
|
|
|
|
|
|
| 166 |
else:
|
| 167 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
| 168 |
|
|
@@ -176,6 +439,19 @@ class JGLUE(ds.GeneratorBasedBuilder):
|
|
| 176 |
|
| 177 |
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 178 |
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
return [
|
| 180 |
ds.SplitGenerator(
|
| 181 |
name=ds.Split.TRAIN,
|
|
|
|
| 1 |
import json
|
| 2 |
+
import random
|
| 3 |
+
import string
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from typing import Dict, List, Optional, Union
|
| 6 |
|
| 7 |
import datasets as ds
|
| 8 |
+
import pandas as pd
|
| 9 |
|
| 10 |
_CITATION = """\
|
| 11 |
@inproceedings{kurihara-etal-2022-jglue,
|
|
|
|
| 44 |
"""
|
| 45 |
|
| 46 |
_DESCRIPTION_CONFIGS = {
|
| 47 |
+
"MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).",
|
| 48 |
"JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
|
| 49 |
"JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
|
| 50 |
"JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
|
|
|
|
| 52 |
}
|
| 53 |
|
| 54 |
_URLS = {
|
| 55 |
+
"MARC-ja": {
|
| 56 |
+
"data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
|
| 57 |
+
"filter_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt",
|
| 58 |
+
"label_conv_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt",
|
| 59 |
+
},
|
| 60 |
"JSTS": {
|
| 61 |
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
|
| 62 |
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
|
|
|
|
| 140 |
return features
|
| 141 |
|
| 142 |
|
| 143 |
+
def features_marc_ja() -> ds.Features:
|
| 144 |
+
features = ds.Features()
|
| 145 |
+
return features
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class MarcJaConfig(ds.BuilderConfig):
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
name: str = "MARC-ja",
|
| 152 |
+
is_han_to_zen: bool = False,
|
| 153 |
+
max_instance_num: Optional[int] = None,
|
| 154 |
+
max_char_length: Optional[int] = None,
|
| 155 |
+
is_pos_neg: bool = False,
|
| 156 |
+
train_ratio: float = 0.94,
|
| 157 |
+
val_ratio: float = 0.03,
|
| 158 |
+
test_ratio: float = 0.03,
|
| 159 |
+
output_testset: bool = False,
|
| 160 |
+
filter_review_id_list_valid: Optional[str] = None,
|
| 161 |
+
filter_review_id_list_test: Optional[str] = None,
|
| 162 |
+
label_conv_review_id_list_valid: Optional[str] = None,
|
| 163 |
+
label_conv_review_id_list_test: Optional[str] = None,
|
| 164 |
+
version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
|
| 165 |
+
data_dir: Optional[str] = None,
|
| 166 |
+
data_files: Optional[ds.data_files.DataFilesDict] = None,
|
| 167 |
+
description: Optional[str] = None,
|
| 168 |
+
) -> None:
|
| 169 |
+
super().__init__(
|
| 170 |
+
name=name,
|
| 171 |
+
version=version,
|
| 172 |
+
data_dir=data_dir,
|
| 173 |
+
data_files=data_files,
|
| 174 |
+
description=description,
|
| 175 |
+
)
|
| 176 |
+
assert train_ratio + val_ratio + test_ratio == 1.0
|
| 177 |
+
|
| 178 |
+
self.train_ratio = train_ratio
|
| 179 |
+
self.val_ratio = val_ratio
|
| 180 |
+
self.test_ratio = test_ratio
|
| 181 |
+
|
| 182 |
+
self.is_han_to_zen = is_han_to_zen
|
| 183 |
+
self.max_instance_num = max_instance_num
|
| 184 |
+
self.max_char_length = max_char_length
|
| 185 |
+
self.is_pos_neg = is_pos_neg
|
| 186 |
+
self.output_testset = output_testset
|
| 187 |
+
self.filter_review_id_list_valid = filter_review_id_list_valid
|
| 188 |
+
self.filter_review_id_list_test = filter_review_id_list_test
|
| 189 |
+
self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
|
| 190 |
+
self.label_conv_review_id_list_test = label_conv_review_id_list_test
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def preprocess_for_marc_ja(
|
| 194 |
+
config: MarcJaConfig,
|
| 195 |
+
data_file_path: str,
|
| 196 |
+
filter_review_id_list_path: str,
|
| 197 |
+
label_conv_review_id_list_path: str,
|
| 198 |
+
) -> Dict[str, str]:
|
| 199 |
+
import mojimoji
|
| 200 |
+
from bs4 import BeautifulSoup
|
| 201 |
+
|
| 202 |
+
df = pd.read_csv(data_file_path, delimiter="\t")
|
| 203 |
+
df = df[["review_body", "star_rating", "review_id"]]
|
| 204 |
+
|
| 205 |
+
# rename columns
|
| 206 |
+
df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
|
| 207 |
+
|
| 208 |
+
def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]:
|
| 209 |
+
if rating >= 4:
|
| 210 |
+
return "positive"
|
| 211 |
+
elif rating <= 2:
|
| 212 |
+
return "negative"
|
| 213 |
+
else:
|
| 214 |
+
if is_pos_neg:
|
| 215 |
+
return None
|
| 216 |
+
else:
|
| 217 |
+
return "neutral"
|
| 218 |
+
|
| 219 |
+
# convert the rating to label
|
| 220 |
+
df = df.assign(
|
| 221 |
+
label=df["rating"].apply(lambda rating: get_label(rating, config.is_pos_neg))
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# remove rows where the label is None
|
| 225 |
+
df = df[df["label"].isnull()]
|
| 226 |
+
|
| 227 |
+
# remove html tags from the text
|
| 228 |
+
df = df.assign(
|
| 229 |
+
text=df["text"].apply(
|
| 230 |
+
lambda text: BeautifulSoup(text, "html.parser").get_text()
|
| 231 |
+
)
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
|
| 235 |
+
ascii_letters = set(string.printable)
|
| 236 |
+
rate = sum(c in ascii_letters for c in text) / len(text)
|
| 237 |
+
return rate >= threshold
|
| 238 |
+
|
| 239 |
+
# filter by ascii rate
|
| 240 |
+
df = df[~df["text"].apply(is_filtered_by_ascii_rate)]
|
| 241 |
+
|
| 242 |
+
if config.max_char_length is not None:
|
| 243 |
+
df = df[df["text"].str.len() <= config.max_char_length]
|
| 244 |
+
|
| 245 |
+
if config.is_han_to_zen:
|
| 246 |
+
df = df.assign(text=df["text"].apply(mojimoji.han_to_zen))
|
| 247 |
+
|
| 248 |
+
df = df[["text", "label", "review_id"]]
|
| 249 |
+
df = df.rename(columns={"text": "sentence"})
|
| 250 |
+
|
| 251 |
+
# shuffle dataset
|
| 252 |
+
instances = df.to_dict(orient="records")
|
| 253 |
+
random.seed(1)
|
| 254 |
+
random.shuffle(instances)
|
| 255 |
+
|
| 256 |
+
def get_filter_review_id_list(
|
| 257 |
+
filter_review_id_list_valid: Optional[str] = None,
|
| 258 |
+
filter_review_id_list_test: Optional[str] = None,
|
| 259 |
+
) -> Dict[str, List[str]]:
|
| 260 |
+
filter_review_id_list = defaultdict(list)
|
| 261 |
+
|
| 262 |
+
if filter_review_id_list_valid is not None:
|
| 263 |
+
with open(filter_review_id_list_valid, "r") as rf:
|
| 264 |
+
filter_review_id_list["valid"] = [line.rstrip() for line in rf]
|
| 265 |
+
|
| 266 |
+
if filter_review_id_list_test is not None:
|
| 267 |
+
with open(filter_review_id_list_test, "r") as rf:
|
| 268 |
+
filter_review_id_list["test"] = [line.rstrip() for line in rf]
|
| 269 |
+
|
| 270 |
+
return filter_review_id_list
|
| 271 |
+
|
| 272 |
+
def get_label_conv_review_id_list(
|
| 273 |
+
label_conv_review_id_list_valid: Optional[str] = None,
|
| 274 |
+
label_conv_review_id_list_test: Optional[str] = None,
|
| 275 |
+
) -> Dict[str, str]:
|
| 276 |
+
label_conv_review_id_list = defaultdict(list)
|
| 277 |
+
|
| 278 |
+
if label_conv_review_id_list_valid is not None:
|
| 279 |
+
breakpoint()
|
| 280 |
+
with open(label_conv_review_id_list_valid, "r") as f:
|
| 281 |
+
label_conv_review_id_list["valid"] = {
|
| 282 |
+
row[0]: row[1] for row in csv.reader(f)
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
if label_conv_review_id_list_test is not None:
|
| 286 |
+
breakpoint()
|
| 287 |
+
with open(label_conv_review_id_list_test, "r") as f:
|
| 288 |
+
label_conv_review_id_list["test"] = {
|
| 289 |
+
row[0]: row[1] for row in csv.reader(f)
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
return label_conv_review_id_list
|
| 293 |
+
|
| 294 |
+
def output_data(
|
| 295 |
+
instances: List[Dict[str, str]],
|
| 296 |
+
train_ratio: float,
|
| 297 |
+
val_ratio: float,
|
| 298 |
+
test_ratio: float,
|
| 299 |
+
output_testset: bool = False,
|
| 300 |
+
) -> Dict[str, str]:
|
| 301 |
+
instance_num = len(instances)
|
| 302 |
+
|
| 303 |
+
split_instances = {}
|
| 304 |
+
length1 = int(instance_num * train_ratio)
|
| 305 |
+
split_instances["train"] = instances[:length1]
|
| 306 |
+
|
| 307 |
+
length2 = int(instance_num * (train_ratio + val_ratio))
|
| 308 |
+
split_instances["valid"] = instances[length1:length2]
|
| 309 |
+
split_instances["test"] = instances[length2:]
|
| 310 |
+
|
| 311 |
+
filter_review_id_list = get_filter_review_id_list(
|
| 312 |
+
filter_review_id_list_valid=config.filter_review_id_list_valid,
|
| 313 |
+
filter_review_id_list_test=config.filter_review_id_list_test,
|
| 314 |
+
)
|
| 315 |
+
label_conv_review_id_list = get_label_conv_review_id_list(
|
| 316 |
+
label_conv_review_id_list_valid=config.label_conv_review_id_list_valid,
|
| 317 |
+
label_conv_review_id_list_test=config.label_conv_review_id_list_test,
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
for eval_type in ("train", "valid", "test"):
|
| 321 |
+
if not output_testset and eval_type == "test":
|
| 322 |
+
continue
|
| 323 |
+
|
| 324 |
+
for instance in split_instances[eval_type]:
|
| 325 |
+
# filter
|
| 326 |
+
if len(filter_review_id_list) != 0:
|
| 327 |
+
filter_flag = False
|
| 328 |
+
for filter_eval_type in ("valid", "test"):
|
| 329 |
+
if (
|
| 330 |
+
eval_type == filter_eval_type
|
| 331 |
+
and instance["review_id"]
|
| 332 |
+
in filter_review_id_list[filter_eval_type]
|
| 333 |
+
):
|
| 334 |
+
filter_flag = True
|
| 335 |
+
if eval_type != filter_eval_type:
|
| 336 |
+
if filter_eval_type in filter_review_id_list:
|
| 337 |
+
assert (
|
| 338 |
+
instance["review_id"]
|
| 339 |
+
not in filter_review_id_list[filter_eval_type]
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if filter_flag is True:
|
| 343 |
+
continue
|
| 344 |
+
|
| 345 |
+
# convert labels
|
| 346 |
+
if len(label_conv_review_id_list) != 0:
|
| 347 |
+
for conv_eval_type in ("valid", "test"):
|
| 348 |
+
if (
|
| 349 |
+
eval_type == conv_eval_type
|
| 350 |
+
and instance["review_id"]
|
| 351 |
+
in label_conv_review_id_list[conv_eval_type]
|
| 352 |
+
):
|
| 353 |
+
assert (
|
| 354 |
+
instance["label"]
|
| 355 |
+
!= label_conv_review_id_list[conv_eval_type][
|
| 356 |
+
instance["review_id"]
|
| 357 |
+
]
|
| 358 |
+
)
|
| 359 |
+
# update
|
| 360 |
+
instance["label"] = label_conv_review_id_list[
|
| 361 |
+
conv_eval_type
|
| 362 |
+
][instance["review_id"]]
|
| 363 |
+
|
| 364 |
+
if eval_type != conv_eval_type:
|
| 365 |
+
if conv_eval_type in label_conv_review_id_list:
|
| 366 |
+
assert (
|
| 367 |
+
instance["review_id"]
|
| 368 |
+
not in label_conv_review_id_list[conv_eval_type]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if eval_type == "test":
|
| 372 |
+
del instance["label"]
|
| 373 |
+
|
| 374 |
+
breakpoint()
|
| 375 |
+
|
| 376 |
+
breakpoint()
|
| 377 |
+
|
| 378 |
+
file_paths = output_data(
|
| 379 |
+
df,
|
| 380 |
+
train_ratio=config.train_ratio,
|
| 381 |
+
val_ratio=config.val_ratio,
|
| 382 |
+
test_ratio=config.test_ratio,
|
| 383 |
+
output_testset=config.output_testset,
|
| 384 |
+
)
|
| 385 |
+
return file_paths
|
| 386 |
+
|
| 387 |
+
|
| 388 |
class JGLUE(ds.GeneratorBasedBuilder):
|
| 389 |
VERSION = ds.Version("1.1.0")
|
| 390 |
BUILDER_CONFIGS = [
|
| 391 |
+
MarcJaConfig(
|
| 392 |
+
name="MARC-ja",
|
| 393 |
+
version=VERSION,
|
| 394 |
+
description=_DESCRIPTION_CONFIGS["MARC-ja"],
|
| 395 |
+
),
|
| 396 |
ds.BuilderConfig(
|
| 397 |
name="JSTS",
|
| 398 |
version=VERSION,
|
|
|
|
| 424 |
features = features_jsquad()
|
| 425 |
elif self.config.name == "JCommonsenseQA":
|
| 426 |
features = features_jcommonsenseqa()
|
| 427 |
+
elif self.config.name == "MARC-ja":
|
| 428 |
+
features = features_marc_ja()
|
| 429 |
else:
|
| 430 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
| 431 |
|
|
|
|
| 439 |
|
| 440 |
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 441 |
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
| 442 |
+
|
| 443 |
+
if self.config.name == "MARC-ja":
|
| 444 |
+
file_paths = preprocess_for_marc_ja(
|
| 445 |
+
config=self.config,
|
| 446 |
+
data_file_path=file_paths["data"],
|
| 447 |
+
filter_review_id_list_path=file_paths[
|
| 448 |
+
"filter_review_id_list/valid.txt"
|
| 449 |
+
],
|
| 450 |
+
label_conv_review_id_list_path=file_paths[
|
| 451 |
+
"label_conv_review_id_list/valid.txt"
|
| 452 |
+
],
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
return [
|
| 456 |
ds.SplitGenerator(
|
| 457 |
name=ds.Split.TRAIN,
|
tests/JGLUE_test.py
CHANGED
|
@@ -48,3 +48,21 @@ def test_load_jsquad(
|
|
| 48 |
|
| 49 |
assert count_num_data("train") == expected_num_train
|
| 50 |
assert count_num_data("validation") == expected_num_valid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
assert count_num_data("train") == expected_num_train
|
| 50 |
assert count_num_data("validation") == expected_num_valid
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def test_load_marc_ja(
|
| 54 |
+
dataset_path: str,
|
| 55 |
+
dataset_name: str = "MARC-ja",
|
| 56 |
+
expected_num_train: int = 187528,
|
| 57 |
+
expected_num_valid: int = 5654,
|
| 58 |
+
):
|
| 59 |
+
dataset = ds.load_dataset(
|
| 60 |
+
path=dataset_path,
|
| 61 |
+
name=dataset_name,
|
| 62 |
+
is_pos_neg=True,
|
| 63 |
+
max_char_length=500,
|
| 64 |
+
is_han_to_zen=True,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
assert dataset["train"].num_rows == expected_num_train
|
| 68 |
+
assert dataset["validation"].num_rows == expected_num_valid
|