import argparse import polars as pl import os MAPPING = {"E": 3, "S": 2, "C": 1, "I": 0} COLUMNS = [ "product_description", "product_bullet_point", "product_brand", "product_color", ] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--source", type=str, required=True, help="path to parquet files" ) parser.add_argument("--small", action="store_true", help="select small subset") parser.add_argument("--split", type=str, choices=["train", "test"], required=True) parser.add_argument( "--locale", type=str, default="us", choices=["us", "es", "jp"], help="language to select", ) args = parser.parse_args() products = pl.read_parquet( os.path.join(args.source, "shopping_queries_dataset_products.parquet") ) examples = pl.read_parquet( os.path.join(args.source, "shopping_queries_dataset_examples.parquet") ) merged = examples.join(products, on=pl.col("product_id")) merged = merged.select(pl.all().exclude("^__index_level_.*$")) merged = merged.with_columns( label=pl.col("esci_label").replace(MAPPING).cast(pl.Int32), id=pl.col("example_id").cast(pl.String), query_id=pl.col("query_id").cast(pl.String), product_id=pl.col("product_id").cast(pl.String), title=pl.col("product_title"), text=pl.concat_str( [pl.lit(f"{col}: ") + pl.col(col).fill_null("") for col in COLUMNS], separator="\n", ), ) print(f"loaded {len(merged)} source rows") merged = merged.filter(pl.col("split") == args.split) print(f"split filtering done: {len(merged)} rows") merged = merged.filter(pl.col("small_version") == args.small) print(f"size filtering done: {len(merged)} rows") merged = merged.filter(pl.col("product_locale") == args.locale) print(f"locale filtering done: {len(merged)} rows") merged.write_ndjson(f"{args.split}.jsonl")