/*************************************************************************************************** * Copyright 2020 NVIDIA Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **************************************************************************************************/ //* 1.0.1 - using absolute import paths when importing standard modules mdl 1.6; import ::df::*; import ::state::*; import ::math::*; import ::tex::*; import ::anno::*; export float3 convert_to_left_hand(float3 vec3, uniform bool up_z = true, uniform bool is_position = true) [[ anno::description("convert from RH to LH"), anno::noinline() ]] { float4x4 ZupConversion = float4x4( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); float4x4 YupConversion = float4x4( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); float4 vec4 = float4(vec3.x, vec3.y, vec3.z, is_position ? 1.0f : 0.0f); vec4 = vec4 * (up_z ? ZupConversion : YupConversion); return float3(vec4.x, vec4.y, vec4.z); } export float3 transform_vector_from_tangent_to_world(float3 vector, uniform bool up_z = true, float3 tangent_u = state::texture_tangent_u(0), float3 tangent_v = state::texture_tangent_v(0)) [[ anno::description("Transform vector from tangent space to world space"), anno::noinline() ]] { /* flip_tangent_v */ return convert_to_left_hand( tangent_u * vector.x - tangent_v * vector.y + state::normal() * vector.z, up_z, false); } export float3 transform_vector_from_world_to_tangent(float3 vector, uniform bool up_z = true, float3 tangent_u = state::texture_tangent_u(0), float3 tangent_v = state::texture_tangent_v(0)) [[ anno::description("Transform vector from world space to tangent space"), anno::noinline() ]] { float3 vecRH = convert_to_left_hand(vector, up_z, false); /* flip_tangent_v */ return vecRH.x * float3(tangent_u.x, -tangent_v.x, state::normal().x) + vecRH.y * float3(tangent_u.y, -tangent_v.y, state::normal().y) + vecRH.z * float3(tangent_u.z, -tangent_v.z, state::normal().z); } export float4 unpack_normal_map( float4 texture_sample = float4(0.0, 0.0, 1.0, 1.0) ) [[ anno::description("Unpack a normal stored in a normal map"), anno::noinline() ]] { float2 normal_xy = float2(texture_sample.x, texture_sample.y); normal_xy = normal_xy * float2(2.0,2.0) - float2(1.0,1.0); float normal_z = math::sqrt( math::saturate( 1.0 - math::dot( normal_xy, normal_xy ) ) ); return float4( normal_xy.x, normal_xy.y, normal_z, 1.0 ); } // for get color value from normal. export float4 pack_normal_map( float4 texture_sample = float4(0.0, 0.0, 1.0, 1.0) ) [[ anno::description("Pack to color from a normal") ]] { float2 return_xy = float2(texture_sample.x, texture_sample.y); return_xy = (return_xy + float2(1.0,1.0)) / float2(2.0,2.0); return float4( return_xy.x, return_xy.y, 0.0, 1.0 ); } export float4 greyscale_texture_lookup( float4 texture_sample = float4(0.0, 0.0, 0.0, 1.0) ) [[ anno::description("Sampling a greyscale texture"), anno::noinline() ]] { return float4(texture_sample.x, texture_sample.x, texture_sample.x, texture_sample.x); } export float3 pixel_normal_world_space(uniform bool up_z = true) [[ anno::description("Pixel normal in world space"), anno::noinline() ]] { return convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false); } export float3 vertex_normal_world_space(uniform bool up_z = true) [[ anno::description("Vertex normal in world space"), anno::noinline() ]] { return convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false); } export float3 landscape_normal_world_space(uniform bool up_z = true) [[ anno::description("Landscape normal in world space") ]] { float3 normalFromNormalmap = math::floor((::vertex_normal_world_space(up_z) * 0.5 + 0.5) * 255.0) / 255.0 * 2.0 - 1.0; float2 normalXY = float2(normalFromNormalmap.x, normalFromNormalmap.y); return float3(normalXY.x, normalXY.y, math::sqrt(math::saturate(1.0 - math::dot(normalXY, normalXY)))); } // Different implementation specific between mdl and hlsl for smoothstep export float smoothstep(float a, float b, float l) { if (a < b) { return math::smoothstep(a, b, l); } else if (a > b) { return 1.0 - math::smoothstep(b, a, l); } else { return l <= a ? 0.0 : 1.0; } } export float2 smoothstep(float2 a, float2 b, float2 l) { return float2(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y)); } export float3 smoothstep(float3 a, float3 b, float3 l) { return float3(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y), smoothstep(a.z, b.z, l.z)); } export float4 smoothstep(float4 a, float4 b, float4 l) { return float4(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y), smoothstep(a.z, b.z, l.z), smoothstep(a.w, b.w, l.w)); } export float2 smoothstep(float2 a, float2 b, float l) { return float2(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l)); } export float3 smoothstep(float3 a, float3 b, float l) { return float3(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l), smoothstep(a.z, b.z, l)); } export float4 smoothstep(float4 a, float4 b, float l) { return float4(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l), smoothstep(a.z, b.z, l), smoothstep(a.w, b.w, l)); } export float2 smoothstep(float a, float b, float2 l) { return float2(smoothstep(a, b, l.x), smoothstep(a, b, l.y)); } export float3 smoothstep(float a, float b, float3 l) { return float3(smoothstep(a, b, l.x), smoothstep(a, b, l.y), smoothstep(a, b, l.z)); } export float4 smoothstep(float a, float b, float4 l) { return float4(smoothstep(a, b, l.x), smoothstep(a, b, l.y), smoothstep(a, b, l.z), smoothstep(a, b, l.w)); } //------------------ Random from UE4 ----------------------- float length2(float3 v) { return math::dot(v, v); } float3 GetPerlinNoiseGradientTextureAt(uniform texture_2d PerlinNoiseGradientTexture, float3 v) { const float2 ZShear = float2(17.0f, 89.0f); float2 OffsetA = v.z * ZShear; float2 TexA = (float2(v.x, v.y) + OffsetA + 0.5f) / 128.0f; float4 PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA.x,1.0-TexA.y),tex::wrap_repeat,tex::wrap_repeat); return float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z) * 2.0 - 1.0; } float3 SkewSimplex(float3 In) { return In + math::dot(In, float3(1.0 / 3.0f) ); } float3 UnSkewSimplex(float3 In) { return In - math::dot(In, float3(1.0 / 6.0f) ); } // 3D random number generator inspired by PCGs (permuted congruential generator) // Using a **simple** Feistel cipher in place of the usual xor shift permutation step // @param v = 3D integer coordinate // @return three elements w/ 16 random bits each (0-0xffff). // ~8 ALU operations for result.x (7 mad, 1 >>) // ~10 ALU operations for result.xy (8 mad, 2 >>) // ~12 ALU operations for result.xyz (9 mad, 3 >>) //TODO: uint3 int3 Rand3DPCG16(int3 p) { // taking a signed int then reinterpreting as unsigned gives good behavior for negatives //TODO: uint3 int3 v = int3(p); // Linear congruential step. These LCG constants are from Numerical Recipies // For additional #'s, PCG would do multiple LCG steps and scramble each on output // So v here is the RNG state v = v * 1664525 + 1013904223; // PCG uses xorshift for the final shuffle, but it is expensive (and cheap // versions of xorshift have visible artifacts). Instead, use simple MAD Feistel steps // // Feistel ciphers divide the state into separate parts (usually by bits) // then apply a series of permutation steps one part at a time. The permutations // use a reversible operation (usually ^) to part being updated with the result of // a permutation function on the other parts and the key. // // In this case, I'm using v.x, v.y and v.z as the parts, using + instead of ^ for // the combination function, and just multiplying the other two parts (no key) for // the permutation function. // // That gives a simple mad per round. v.x += v.y*v.z; v.y += v.z*v.x; v.z += v.x*v.y; v.x += v.y*v.z; v.y += v.z*v.x; v.z += v.x*v.y; // only top 16 bits are well shuffled return v >> 16; } // Wraps noise for tiling texture creation // @param v = unwrapped texture parameter // @param bTiling = true to tile, false to not tile // @param RepeatSize = number of units before repeating // @return either original or wrapped coord float3 NoiseTileWrap(float3 v, bool bTiling, float RepeatSize) { return bTiling ? (math::frac(v / RepeatSize) * RepeatSize) : v; } // Evaluate polynomial to get smooth transitions for Perlin noise // only needed by Perlin functions in this file // scalar(per component): 2 add, 5 mul float4 PerlinRamp(float4 t) { return t * t * t * (t * (t * 6 - 15) + 10); } // Blum-Blum-Shub-inspired pseudo random number generator // http://www.umbc.edu/~olano/papers/mNoise.pdf // real BBS uses ((s*s) mod M) with bignums and M as the product of two huge Blum primes // instead, we use a single prime M just small enough not to overflow // note that the above paper used 61, which fits in a half, but is unusably bad // @param Integer valued floating point seed // @return random number in range [0,1) // ~8 ALU operations (5 *, 3 frac) float RandBBSfloat(float seed) { float BBS_PRIME24 = 4093.0; float s = math::frac(seed / BBS_PRIME24); s = math::frac(s * s * BBS_PRIME24); s = math::frac(s * s * BBS_PRIME24); return s; } // Modified noise gradient term // @param seed - random seed for integer lattice position // @param offset - [-1,1] offset of evaluation point from lattice point // @return gradient direction (xyz) and contribution (w) from this lattice point float4 MGradient(int seed, float3 offset) { //TODO uint int rand = Rand3DPCG16(int3(seed,0,0)).x; int3 MGradientMask = int3(0x8000, 0x4000, 0x2000); float3 MGradientScale = float3(1.0 / 0x4000, 1.0 / 0x2000, 1.0 / 0x1000); float3 direction = float3(int3(rand, rand, rand) & MGradientMask) * MGradientScale - 1; return float4(direction.x, direction.y, direction.z, math::dot(direction, offset)); } // compute Perlin and related noise corner seed values // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D // @param bTiling = true to return seed values for a repeating noise pattern // @param RepeatSize = integer units before tiling in each dimension // @param seed000-seed111 = hash function seeds for the eight corners // @return fractional part of v struct SeedValue { float3 fv = float3(0); float seed000 = 0; float seed001 = 0; float seed010 = 0; float seed011 = 0; float seed100 = 0; float seed101 = 0; float seed110 = 0; float seed111 = 0; }; SeedValue NoiseSeeds(float3 v, bool bTiling, float RepeatSize) { SeedValue seeds; seeds.fv = math::frac(v); float3 iv = math::floor(v); const float3 primes = float3(19, 47, 101); if (bTiling) { // can't algebraically combine with primes seeds.seed000 = math::dot(primes, NoiseTileWrap(iv, true, RepeatSize)); seeds.seed100 = math::dot(primes, NoiseTileWrap(iv + float3(1, 0, 0), true, RepeatSize)); seeds.seed010 = math::dot(primes, NoiseTileWrap(iv + float3(0, 1, 0), true, RepeatSize)); seeds.seed110 = math::dot(primes, NoiseTileWrap(iv + float3(1, 1, 0), true, RepeatSize)); seeds.seed001 = math::dot(primes, NoiseTileWrap(iv + float3(0, 0, 1), true, RepeatSize)); seeds.seed101 = math::dot(primes, NoiseTileWrap(iv + float3(1, 0, 1), true, RepeatSize)); seeds.seed011 = math::dot(primes, NoiseTileWrap(iv + float3(0, 1, 1), true, RepeatSize)); seeds.seed111 = math::dot(primes, NoiseTileWrap(iv + float3(1, 1, 1), true, RepeatSize)); } else { // get to combine offsets with multiplication by primes in this case seeds.seed000 = math::dot(iv, primes); seeds.seed100 = seeds.seed000 + primes.x; seeds.seed010 = seeds.seed000 + primes.y; seeds.seed110 = seeds.seed100 + primes.y; seeds.seed001 = seeds.seed000 + primes.z; seeds.seed101 = seeds.seed100 + primes.z; seeds.seed011 = seeds.seed010 + primes.z; seeds.seed111 = seeds.seed110 + primes.z; } return seeds; } struct SimplexWeights { float4 Result = float4(0); float3 PosA = float3(0); float3 PosB = float3(0); float3 PosC = float3(0); float3 PosD = float3(0); }; // Computed weights and sample positions for simplex interpolation // @return float4(a,b,c, d) Barycentric coordinate defined as Filtered = Tex(PosA) * a + Tex(PosB) * b + Tex(PosC) * c + Tex(PosD) * d SimplexWeights ComputeSimplexWeights3D(float3 OrthogonalPos) { SimplexWeights weights; float3 OrthogonalPosFloor = math::floor(OrthogonalPos); weights.PosA = OrthogonalPosFloor; weights.PosB = weights.PosA + float3(1, 1, 1); OrthogonalPos -= OrthogonalPosFloor; float Largest = math::max(OrthogonalPos.x, math::max(OrthogonalPos.y, OrthogonalPos.z)); float Smallest = math::min(OrthogonalPos.x, math::min(OrthogonalPos.y, OrthogonalPos.z)); weights.PosC = weights.PosA + float3(Largest == OrthogonalPos.x, Largest == OrthogonalPos.y, Largest == OrthogonalPos.z); weights.PosD = weights.PosA + float3(Smallest != OrthogonalPos.x, Smallest != OrthogonalPos.y, Smallest != OrthogonalPos.z); float RG = OrthogonalPos.x - OrthogonalPos.y; float RB = OrthogonalPos.x - OrthogonalPos.z; float GB = OrthogonalPos.y - OrthogonalPos.z; weights.Result.z = math::min(math::max(0, RG), math::max(0, RB)) // X + math::min(math::max(0, -RG), math::max(0, GB)) // Y + math::min(math::max(0, -RB), math::max(0, -GB)); // Z weights.Result.w = math::min(math::max(0, -RG), math::max(0, -RB)) // X + math::min(math::max(0, RG), math::max(0, -GB)) // Y + math::min(math::max(0, RB), math::max(0, GB)); // Z weights.Result.y = Smallest; weights.Result.x = 1.0f - weights.Result.y - weights.Result.z - weights.Result.w; return weights; } // filtered 3D gradient simple noise (few texture lookups, high quality) // @param v >0 // @return random number in the range -1 .. 1 float SimplexNoise3D_TEX(uniform texture_2d PerlinNoiseGradientTexture, float3 EvalPos) { float3 OrthogonalPos = SkewSimplex(EvalPos); SimplexWeights Weights = ComputeSimplexWeights3D(OrthogonalPos); // can be optimized to 1 or 2 texture lookups (4 or 8 channel encoded in 32 bit) float3 A = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosA); float3 B = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosB); float3 C = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosC); float3 D = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosD); Weights.PosA = UnSkewSimplex(Weights.PosA); Weights.PosB = UnSkewSimplex(Weights.PosB); Weights.PosC = UnSkewSimplex(Weights.PosC); Weights.PosD = UnSkewSimplex(Weights.PosD); float DistanceWeight; DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosA)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight; float a = math::dot(A, EvalPos - Weights.PosA) * DistanceWeight; DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosB)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight; float b = math::dot(B, EvalPos - Weights.PosB) * DistanceWeight; DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosC)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight; float c = math::dot(C, EvalPos - Weights.PosC) * DistanceWeight; DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosD)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight; float d = math::dot(D, EvalPos - Weights.PosD) * DistanceWeight; return 32 * (a + b + c + d); } // filtered 3D noise, can be optimized // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D // @param bTiling = repeat noise pattern // @param RepeatSize = integer units before tiling in each dimension // @return random number in the range -1 .. 1 float GradientNoise3D_TEX(uniform texture_2d PerlinNoiseGradientTexture, float3 v, bool bTiling, float RepeatSize) { bTiling = true; float3 fv = math::frac(v); float3 iv0 = NoiseTileWrap(math::floor(v), bTiling, RepeatSize); float3 iv1 = NoiseTileWrap(iv0 + 1, bTiling, RepeatSize); const int2 ZShear = int2(17, 89); float2 OffsetA = iv0.z * ZShear; float2 OffsetB = OffsetA + ZShear; // non-tiling, use relative offset if (bTiling) // tiling, have to compute from wrapped coordinates { OffsetB = iv1.z * ZShear; } // Texture size scale factor float ts = 1 / 128.0f; // texture coordinates for iv0.xy, as offset for both z slices float2 TexA0 = (float2(iv0.x, iv0.y) + OffsetA + 0.5f) * ts; float2 TexB0 = (float2(iv0.x, iv0.y) + OffsetB + 0.5f) * ts; // texture coordinates for iv1.xy, as offset for both z slices float2 TexA1 = TexA0 + ts; // for non-tiling, can compute relative to existing coordinates float2 TexB1 = TexB0 + ts; if (bTiling) // for tiling, need to compute from wrapped coordinates { TexA1 = (float2(iv1.x, iv1.y) + OffsetA + 0.5f) * ts; TexB1 = (float2(iv1.x, iv1.y) + OffsetB + 0.5f) * ts; } // can be optimized to 1 or 2 texture lookups (4 or 8 channel encoded in 8, 16 or 32 bit) float4 PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA0.x,1.0-TexA0.y),tex::wrap_repeat,tex::wrap_repeat); float3 PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 A = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA1.x,1.0-TexA0.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 B = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA0.x,1.0-TexA1.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 C = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA1.x,1.0-TexA1.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 D = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB0.x,1.0-TexB0.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 E = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB1.x,1.0-TexB0.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 F = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB0.x,1.0-TexB1.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 G = PerlinNoiseColor * 2 - 1; PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB1.x,1.0-TexB1.y),tex::wrap_repeat,tex::wrap_repeat); PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z); float3 H = PerlinNoiseColor * 2 - 1; float a = math::dot(A, fv - float3(0, 0, 0)); float b = math::dot(B, fv - float3(1, 0, 0)); float c = math::dot(C, fv - float3(0, 1, 0)); float d = math::dot(D, fv - float3(1, 1, 0)); float e = math::dot(E, fv - float3(0, 0, 1)); float f = math::dot(F, fv - float3(1, 0, 1)); float g = math::dot(G, fv - float3(0, 1, 1)); float h = math::dot(H, fv - float3(1, 1, 1)); float4 Weights = PerlinRamp(math::frac(float4(fv.x, fv.y, fv.z, 0))); float i = math::lerp(math::lerp(a, b, Weights.x), math::lerp(c, d, Weights.x), Weights.y); float j = math::lerp(math::lerp(e, f, Weights.x), math::lerp(g, h, Weights.x), Weights.y); return math::lerp(i, j, Weights.z); } // @return random number in the range -1 .. 1 // scalar: 6 frac, 31 mul/mad, 15 add, float FastGradientPerlinNoise3D_TEX(uniform texture_3d PerlinNoise3DTexture, float3 xyz) { // needs to be the same value when creating the PerlinNoise3D texture float Extent = 16; // last texel replicated and needed for filtering // scalar: 3 frac, 6 mul xyz = math::frac(xyz / (Extent - 1)) * (Extent - 1); // scalar: 3 frac float3 uvw = math::frac(xyz); // = floor(xyz); // scalar: 3 add float3 p0 = xyz - uvw; // float3 f = math::pow(uvw, 2) * 3.0f - math::pow(uvw, 3) * 2.0f; // original perlin hermite (ok when used without bump mapping) // scalar: 2*3 add 5*3 mul float4 pr = PerlinRamp(float4(uvw.x, uvw.y, uvw.z, 0)); float3 f = float3(pr.x, pr.y, pr.z); // new, better with continues second derivative for bump mapping // scalar: 3 add float3 p = p0 + f; // scalar: 3 mad // TODO: need reverse??? float4 NoiseSample = tex::lookup_float4(PerlinNoise3DTexture, p / Extent + 0.5f / Extent); // +0.5f to get rid of bilinear offset // reconstruct from 8bit (using mad with 2 constants and dot4 was same instruction count) // scalar: 4 mad, 3 mul, 3 add float3 n = float3(NoiseSample.x, NoiseSample.y, NoiseSample.z) * 255.0f / 127.0f - 1.0f; float d = NoiseSample.w * 255.f - 127; return math::dot(xyz, n) - d; } // Perlin-style "Modified Noise" // http://www.umbc.edu/~olano/papers/index.html#mNoise // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D // @param bTiling = repeat noise pattern // @param RepeatSize = integer units before tiling in each dimension // @return random number in the range -1 .. 1 float GradientNoise3D_ALU(float3 v, bool bTiling, float RepeatSize) { SeedValue seeds = NoiseSeeds(v, bTiling, RepeatSize); float rand000 = MGradient(int(seeds.seed000), seeds.fv - float3(0, 0, 0)).w; float rand100 = MGradient(int(seeds.seed100), seeds.fv - float3(1, 0, 0)).w; float rand010 = MGradient(int(seeds.seed010), seeds.fv - float3(0, 1, 0)).w; float rand110 = MGradient(int(seeds.seed110), seeds.fv - float3(1, 1, 0)).w; float rand001 = MGradient(int(seeds.seed001), seeds.fv - float3(0, 0, 1)).w; float rand101 = MGradient(int(seeds.seed101), seeds.fv - float3(1, 0, 1)).w; float rand011 = MGradient(int(seeds.seed011), seeds.fv - float3(0, 1, 1)).w; float rand111 = MGradient(int(seeds.seed111), seeds.fv - float3(1, 1, 1)).w; float4 Weights = PerlinRamp(float4(seeds.fv.x, seeds.fv.y, seeds.fv.z, 0)); float i = math::lerp(math::lerp(rand000, rand100, Weights.x), math::lerp(rand010, rand110, Weights.x), Weights.y); float j = math::lerp(math::lerp(rand001, rand101, Weights.x), math::lerp(rand011, rand111, Weights.x), Weights.y); return math::lerp(i, j, Weights.z); } // 3D value noise - used to be incorrectly called Perlin noise // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D // @param bTiling = repeat noise pattern // @param RepeatSize = integer units before tiling in each dimension // @return random number in the range -1 .. 1 float ValueNoise3D_ALU(float3 v, bool bTiling, float RepeatSize) { SeedValue seeds = NoiseSeeds(v, bTiling, RepeatSize); float rand000 = RandBBSfloat(seeds.seed000) * 2 - 1; float rand100 = RandBBSfloat(seeds.seed100) * 2 - 1; float rand010 = RandBBSfloat(seeds.seed010) * 2 - 1; float rand110 = RandBBSfloat(seeds.seed110) * 2 - 1; float rand001 = RandBBSfloat(seeds.seed001) * 2 - 1; float rand101 = RandBBSfloat(seeds.seed101) * 2 - 1; float rand011 = RandBBSfloat(seeds.seed011) * 2 - 1; float rand111 = RandBBSfloat(seeds.seed111) * 2 - 1; float4 Weights = PerlinRamp(float4(seeds.fv.x, seeds.fv.y, seeds.fv.z, 0)); float i = math::lerp(math::lerp(rand000, rand100, Weights.x), math::lerp(rand010, rand110, Weights.x), Weights.y); float j = math::lerp(math::lerp(rand001, rand101, Weights.x), math::lerp(rand011, rand111, Weights.x), Weights.y); return math::lerp(i, j, Weights.z); } // 3D jitter offset within a voronoi noise cell // @param pos - integer lattice corner // @return random offsets vector float3 VoronoiCornerSample(float3 pos, int Quality) { // random values in [-0.5, 0.5] float3 noise = float3(Rand3DPCG16(int3(pos))) / 0xffff - 0.5; // quality level 1 or 2: searches a 2x2x2 neighborhood with points distributed on a sphere // scale factor to guarantee jittered points will be found within a 2x2x2 search if (Quality <= 2) { return math::normalize(noise) * 0.2588; } // quality level 3: searches a 3x3x3 neighborhood with points distributed on a sphere // scale factor to guarantee jittered points will be found within a 3x3x3 search if (Quality == 3) { return math::normalize(noise) * 0.3090; } // quality level 4: jitter to anywhere in the cell, needs 4x4x4 search return noise; } // compare previous best with a new candidate // not producing point locations makes it easier for compiler to eliminate calculations when they're not needed // @param minval = location and distance of best candidate seed point before the new one // @param candidate = candidate seed point // @param offset = 3D offset to new candidate seed point // @param bDistanceOnly = if true, only set maxval.w with distance, otherwise maxval.w is distance and maxval.xyz is position // @return position (if bDistanceOnly is false) and distance to closest seed point so far float4 VoronoiCompare(float4 minval, float3 candidate, float3 offset, bool bDistanceOnly) { if (bDistanceOnly) { return float4(0, 0, 0, math::min(minval.w, math::dot(offset, offset))); } else { float newdist = math::dot(offset, offset); return newdist > minval.w ? minval : float4(candidate.x, candidate.y, candidate.z, newdist); } } // 220 instruction Worley noise float4 VoronoiNoise3D_ALU(float3 v, int Quality, bool bTiling, float RepeatSize, bool bDistanceOnly) { float3 fv = math::frac(v), fv2 = math::frac(v + 0.5); float3 iv = math::floor(v), iv2 = math::floor(v + 0.5); // with initial minimum distance = infinity (or at least bigger than 4), first min is optimized away float4 mindist = float4(0,0,0,100); float3 p, offset; // quality level 3: do a 3x3x3 search if (Quality == 3) { int offset_x; int offset_y; int offset_z; for (offset_x = -1; offset_x <= 1; ++offset_x) { for (offset_y = -1; offset_y <= 1; ++offset_y) { for (offset_z = -1; offset_z <= 1; ++offset_z) { offset = float3(offset_x, offset_y, offset_z); p = offset + VoronoiCornerSample(NoiseTileWrap(iv2 + offset, bTiling, RepeatSize), Quality); mindist = VoronoiCompare(mindist, iv2 + p, fv2 - p, bDistanceOnly); } } } } // everybody else searches a base 2x2x2 neighborhood else { int offset_x; int offset_y; int offset_z; for (offset_x = 0; offset_x <= 1; ++offset_x) { for (offset_y = 0; offset_y <= 1; ++offset_y) { for (offset_z = 0; offset_z <= 1; ++offset_z) { offset = float3(offset_x, offset_y, offset_z); p = offset + VoronoiCornerSample(NoiseTileWrap(iv + offset, bTiling, RepeatSize), Quality); mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly); // quality level 2, do extra set of points, offset by half a cell if (Quality == 2) { // 467 is just an offset to a different area in the random number field to avoid similar neighbor artifacts p = offset + VoronoiCornerSample(NoiseTileWrap(iv2 + offset, bTiling, RepeatSize) + 467, Quality); mindist = VoronoiCompare(mindist, iv2 + p, fv2 - p, bDistanceOnly); } } } } } // quality level 4: add extra sets of four cells in each direction if (Quality >= 4) { int offset_x; int offset_y; int offset_z; for (offset_x = -1; offset_x <= 2; offset_x += 3) { for (offset_y = 0; offset_y <= 1; ++offset_y) { for (offset_z = 0; offset_z <= 1; ++offset_z) { offset = float3(offset_x, offset_y, offset_z); // along x axis p = offset + VoronoiCornerSample(NoiseTileWrap(iv + offset, bTiling, RepeatSize), Quality); mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly); // along y axis p = float3(offset.y, offset.z, offset.x) + VoronoiCornerSample(NoiseTileWrap(iv + float3(offset.y, offset.z, offset.x), bTiling, RepeatSize), Quality); mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly); // along z axis p = float3(offset.z, offset.x, offset.y) + VoronoiCornerSample(NoiseTileWrap(iv + float3(offset.z, offset.x, offset.y), bTiling, RepeatSize), Quality); mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly); } } } } // transform squared distance to real distance return float4(mindist.x, mindist.y, mindist.z, math::sqrt(mindist.w)); } // Coordinates for corners of a Simplex tetrahedron // Based on McEwan et al., Efficient computation of noise in GLSL, JGT 2011 // @param v = 3D noise argument // @return 4 corner locations float4x3 SimplexCorners(float3 v) { // find base corner by skewing to tetrahedral space and back float3 tet = math::floor(v + v.x/3 + v.y/3 + v.z/3); float3 base = tet - tet.x/6 - tet.y/6 - tet.z/6; float3 f = v - base; // Find offsets to other corners (McEwan did this in tetrahedral space, // but since skew is along x=y=z axis, this works in Euclidean space too.) float3 g = math::step(float3(f.y,f.z,f.x), float3(f.x,f.y,f.z)), h = 1 - float3(g.z, g.x, g.y); float3 a1 = math::min(g, h) - 1.0 / 6.0, a2 = math::max(g, h) - 1.0 / 3.0; // four corners return float4x3(base, base + a1, base + a2, base + 0.5); } // Improved smoothing function for simplex noise // @param f = fractional distance to four tetrahedral corners // @return weight for each corner float4 SimplexSmooth(float4x3 f) { const float scale = 1024. / 375.; // scale factor to make noise -1..1 float4 d = float4(math::dot(f[0], f[0]), math::dot(f[1], f[1]), math::dot(f[2], f[2]), math::dot(f[3], f[3])); float4 s = math::saturate(2 * d); return (1 * scale + s*(-3 * scale + s*(3 * scale - s*scale))); } // Derivative of simplex noise smoothing function // @param f = fractional distanc eto four tetrahedral corners // @return derivative of smoothing function for each corner by x, y and z float3x4 SimplexDSmooth(float4x3 f) { const float scale = 1024. / 375.; // scale factor to make noise -1..1 float4 d = float4(math::dot(f[0], f[0]), math::dot(f[1], f[1]), math::dot(f[2], f[2]), math::dot(f[3], f[3])); float4 s = math::saturate(2 * d); s = -12 * scale + s*(24 * scale - s * 12 * scale); return float3x4( s * float4(f[0][0], f[1][0], f[2][0], f[3][0]), s * float4(f[0][1], f[1][1], f[2][1], f[3][1]), s * float4(f[0][2], f[1][2], f[2][2], f[3][2])); } // Simplex noise and its Jacobian derivative // @param v = 3D noise argument // @param bTiling = whether to repeat noise pattern // @param RepeatSize = integer units before tiling in each dimension, must be a multiple of 3 // @return float3x3 Jacobian in J[*].xyz, vector noise in J[*].w // J[0].w, J[1].w, J[2].w is a Perlin-style simplex noise with vector output, e.g. (Nx, Ny, Nz) // J[i].x is X derivative of the i'th component of the noise so J[2].x is dNz/dx // You can use this to compute the noise, gradient, curl, or divergence: // float3x4 J = JacobianSimplex_ALU(...); // float3 VNoise = float3(J[0].w, J[1].w, J[2].w); // 3D noise // float3 Grad = J[0].xyz; // gradient of J[0].w // float3 Curl = float3(J[1][2]-J[2][1], J[2][0]-J[0][2], J[0][1]-J[1][2]); // float Div = J[0][0]+J[1][1]+J[2][2]; // All of these are confirmed to compile out all unneeded terms. // So Grad of X doesn't compute Y or Z components, and VNoise doesn't do any of the derivative computation. float3x4 JacobianSimplex_ALU(float3 v, bool bTiling, float RepeatSize) { int3 MGradientMask = int3(0x8000, 0x4000, 0x2000); float3 MGradientScale = float3(1. / 0x4000, 1. / 0x2000, 1. / 0x1000); // corners of tetrahedron float4x3 T = SimplexCorners(v); // TODO: uint3 int3 rand = int3(0); float4x3 gvec0 = float4x3(1.0); float4x3 gvec1 = float4x3(1.0); float4x3 gvec2 = float4x3(1.0); float4x3 fv = float4x3(1.0); float3x4 grad = float3x4(1.0); // processing of tetrahedral vertices, unrolled // to compute gradient at each corner fv[0] = v - T[0]; rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[0] + 0.5, bTiling, RepeatSize)))); gvec0[0] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1; gvec1[0] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1; gvec2[0] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1; grad[0][0] = math::dot(gvec0[0], fv[0]); grad[1][0] = math::dot(gvec1[0], fv[0]); grad[2][0] = math::dot(gvec2[0], fv[0]); fv[1] = v - T[1]; rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[1] + 0.5, bTiling, RepeatSize)))); gvec0[1] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1; gvec1[1] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1; gvec1[1] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1; grad[0][1] = math::dot(gvec0[1], fv[1]); grad[1][1] = math::dot(gvec1[1], fv[1]); grad[2][1] = math::dot(gvec2[1], fv[1]); fv[2] = v - T[2]; rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[2] + 0.5, bTiling, RepeatSize)))); gvec0[2] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1; gvec1[2] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1; gvec2[2] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1; grad[0][2] = math::dot(gvec0[2], fv[2]); grad[1][2] = math::dot(gvec1[2], fv[2]); grad[2][2] = math::dot(gvec2[2], fv[2]); fv[3] = v - T[3]; rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[3] + 0.5, bTiling, RepeatSize)))); gvec0[3] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1; gvec1[3] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1; gvec2[3] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1; grad[0][3] = math::dot(gvec0[3], fv[3]); grad[1][3] = math::dot(gvec1[3], fv[3]); grad[2][3] = math::dot(gvec2[3], fv[3]); // blend gradients float4 sv = SimplexSmooth(fv); float3x4 ds = SimplexDSmooth(fv); float3x4 jacobian = float3x4(1.0); float3 vec0 = gvec0*sv + grad[0]*ds; // NOTE: mdl is column major, convert from UE4 (row major) jacobian[0] = float4(vec0.x, vec0.y, vec0.z, math::dot(sv, grad[0])); float3 vec1 = gvec1*sv + grad[1]*ds; jacobian[1] = float4(vec1.x, vec1.y, vec1.z, math::dot(sv, grad[1])); float3 vec2 = gvec2*sv + grad[2]*ds; jacobian[2] = float4(vec2.x, vec2.y, vec2.z, math::dot(sv, grad[2])); return jacobian; } // While RepeatSize is a float here, the expectation is that it would be largely integer values coming in from the UI. The downstream logic assumes // floats for all called functions (NoiseTileWrap) and this prevents any float-to-int conversion errors from automatic type conversion. float Noise3D_Multiplexer(uniform texture_2d PerlinNoiseGradientTexture, uniform texture_3d PerlinNoise3DTexture, int Function, float3 Position, int Quality, bool bTiling, float RepeatSize) { // verified, HLSL compiled out the switch if Function is a constant switch(Function) { case 0: return SimplexNoise3D_TEX(PerlinNoiseGradientTexture, Position); case 1: return GradientNoise3D_TEX(PerlinNoiseGradientTexture, Position, bTiling, RepeatSize); case 2: return FastGradientPerlinNoise3D_TEX(PerlinNoise3DTexture, Position); case 3: return GradientNoise3D_ALU(Position, bTiling, RepeatSize); case 4: return ValueNoise3D_ALU(Position, bTiling, RepeatSize); case 5: return VoronoiNoise3D_ALU(Position, Quality, bTiling, RepeatSize, true).w * 2.0 - 1.0; } return 0; } //---------------------------------------------------------- export float noise(uniform texture_2d PerlinNoiseGradientTexture, uniform texture_3d PerlinNoise3DTexture, float3 Position, float Scale, float Quality, float Function, float Turbulence, float Levels, float OutputMin, float OutputMax, float LevelScale, float FilterWidth, float Tiling, float RepeatSize) [[ anno::description("Noise"), anno::noinline() ]] { Position *= Scale; FilterWidth *= Scale; float Out = 0.0f; float OutScale = 1.0f; float InvLevelScale = 1.0f / LevelScale; int iFunction(Function); int iQuality(Quality); int iLevels(Levels); bool bTurbulence(Turbulence); bool bTiling(Tiling); for(int i = 0; i < iLevels; ++i) { // fade out noise level that are too high frequent (not done through dynamic branching as it usually requires gradient instructions) OutScale *= math::saturate(1.0 - FilterWidth); if(bTurbulence) { Out += math::abs(Noise3D_Multiplexer(PerlinNoiseGradientTexture, PerlinNoise3DTexture, iFunction, Position, iQuality, bTiling, RepeatSize)) * OutScale; } else { Out += Noise3D_Multiplexer(PerlinNoiseGradientTexture, PerlinNoise3DTexture, iFunction, Position, iQuality, bTiling, RepeatSize) * OutScale; } Position *= LevelScale; RepeatSize *= LevelScale; OutScale *= InvLevelScale; FilterWidth *= LevelScale; } if(!bTurbulence) { // bring -1..1 to 0..1 range Out = Out * 0.5f + 0.5f; } // Out is in 0..1 range return math::lerp(OutputMin, OutputMax, Out); } // Material node for noise functions returning a vector value // @param LevelScale usually 2 but higher values allow efficient use of few levels // @return in user defined range (OutputMin..OutputMax) export float4 vector4_noise(float3 Position, float Quality, float Function, float Tiling, float TileSize) [[ anno::description("Vector Noise"), anno::noinline() ]] { float4 result = float4(0,0,0,1); float3 ret = float3(0); int iQuality = int(Quality); int iFunction = int(Function); bool bTiling = Tiling > 0.0; float3x4 Jacobian = JacobianSimplex_ALU(Position, bTiling, TileSize); // compiled out if not used // verified, HLSL compiled out the switch if Function is a constant switch (iFunction) { case 0: // Cellnoise ret = float3(Rand3DPCG16(int3(math::floor(NoiseTileWrap(Position, bTiling, TileSize))))) / 0xffff; result = float4(ret.x, ret.y, ret.z, 1); break; case 1: // Color noise ret = float3(Jacobian[0].w, Jacobian[1].w, Jacobian[2].w); result = float4(ret.x, ret.y, ret.z, 1); break; case 2: // Gradient result = Jacobian[0]; break; case 3: // Curl ret = float3(Jacobian[2][1] - Jacobian[1][2], Jacobian[0][2] - Jacobian[2][0], Jacobian[1][0] - Jacobian[0][1]); result = float4(ret.x, ret.y, ret.z, 1); break; case 4: // Voronoi result = VoronoiNoise3D_ALU(Position, iQuality, bTiling, TileSize, false); break; } return result; } export float3 vector3_noise(float3 Position, float Quality, float Function, float Tiling, float TileSize) [[ anno::description("Vector Noise float3 version"), anno::noinline() ]] { float4 noise = vector4_noise(Position, Quality, Function, Tiling, TileSize); return float3(noise.x, noise.y, noise.z); } // workaround for ue4 fresnel (without supporting for camera vector) : replacing it with 0.0, means facing to the view export float fresnel(float exponent [[anno::unused()]], float base_reflect_fraction [[anno::unused()]], float3 normal [[anno::unused()]]) [[ anno::description("Fresnel"), anno::noinline() ]] { return 0.0; } export float fresnel_function(float3 normal_vector [[anno::unused()]], float3 camera_vector [[anno::unused()]], bool invert_fresnel [[anno::unused()]], float power [[anno::unused()]], bool use_cheap_contrast [[anno::unused()]], float cheap_contrast_dark [[anno::unused()]], float cheap_contrast_bright [[anno::unused()]], bool clamp_fresnel_dot_product [[anno::unused()]]) [[ anno::description("Fresnel Function"), anno::noinline() ]] { return 0.0; } export float3 camera_vector(uniform bool up_z = true) [[ anno::description("Camera Vector"), anno::noinline() ]] { // assume camera postion is 0,0,0 return math::normalize(float3(0) - convert_to_left_hand(state::transform_point(state::coordinate_internal,state::coordinate_world,state::position()), up_z)); } export float pixel_depth() [[ anno::description("Pixel Depth"), anno::noinline() ]] { return 256.0f; } export float scene_depth() [[ anno::description("Scene Depth") ]] { return 65500.0f; } export float3 scene_color() [[ anno::description("Scene Color") ]] { return float3(1.0f); } export float4 vertex_color() [[ anno::description("Vertex Color"), anno::noinline() ]] { return float4(1.0f); } export float4 vertex_color_from_coordinate(int VertexColorCoordinateIndex) [[ anno::description("Vertex Color for float2 PrimVar"), anno::noinline() ]] { // Kit only supports 4 uv sets, 2 uvs are available to vertex color. if vertex color index is invalid, output the constant WHITE color intead return (VertexColorCoordinateIndex > 2) ? float4(1.0f) : float4(state::texture_coordinate(VertexColorCoordinateIndex).x, state::texture_coordinate(VertexColorCoordinateIndex).y, state::texture_coordinate(VertexColorCoordinateIndex+1).x, state::texture_coordinate(VertexColorCoordinateIndex+1).y); } export float3 camera_position() [[ anno::description("Camera Position"), anno::noinline() ]] { return float3(1000.0f, 0, 0); } export float3 rotate_about_axis(float4 NormalizedRotationAxisAndAngle, float3 PositionOnAxis, float3 Position) [[ anno::description("Rotates Position about the given axis by the given angle") ]] { // Project Position onto the rotation axis and find the closest point on the axis to Position float3 NormalizedRotationAxis = float3(NormalizedRotationAxisAndAngle.x,NormalizedRotationAxisAndAngle.y,NormalizedRotationAxisAndAngle.z); float3 ClosestPointOnAxis = PositionOnAxis + NormalizedRotationAxis * math::dot(NormalizedRotationAxis, Position - PositionOnAxis); // Construct orthogonal axes in the plane of the rotation float3 UAxis = Position - ClosestPointOnAxis; float3 VAxis = math::cross(NormalizedRotationAxis, UAxis); float[2] SinCosAngle = math::sincos(NormalizedRotationAxisAndAngle.w); // Rotate using the orthogonal axes float3 R = UAxis * SinCosAngle[1] + VAxis * SinCosAngle[0]; // Reconstruct the rotated world space position float3 RotatedPosition = ClosestPointOnAxis + R; // Convert from position to a position offset return RotatedPosition - Position; } export float2 rotate_scale_offset_texcoords(float2 InTexCoords, float4 InRotationScale, float2 InOffset) [[ anno::description("Returns a float2 texture coordinate after 2x2 transform and offset applied") ]] { return float2(math::dot(InTexCoords, float2(InRotationScale.x, InRotationScale.y)), math::dot(InTexCoords, float2(InRotationScale.z, InRotationScale.w))) + InOffset; } export float3 reflection_custom_world_normal(float3 WorldNormal, bool bNormalizeInputNormal, uniform bool up_z = true) [[ anno::description("Reflection vector about the specified world space normal") ]] { if (bNormalizeInputNormal) { WorldNormal = math::normalize(WorldNormal); } return -camera_vector(up_z) + WorldNormal * math::dot(WorldNormal, camera_vector(up_z)) * 2.0; } export float3 reflection_vector(uniform bool up_z = true) [[ anno::description("Reflection Vector"), anno::noinline() ]] { float3 normal = convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false); return reflection_custom_world_normal(normal, false, up_z); } export float dither_temporalAA(float AlphaThreshold = 0.5f, float Random = 1.0f [[anno::unused()]]) [[ anno::description("Dither TemporalAA"), anno::noinline() ]] { return AlphaThreshold; } export float3 black_body( float Temp ) [[ anno::description("Black Body"), anno::noinline() ]] { float u = ( 0.860117757f + 1.54118254e-4f * Temp + 1.28641212e-7f * Temp*Temp ) / ( 1.0f + 8.42420235e-4f * Temp + 7.08145163e-7f * Temp*Temp ); float v = ( 0.317398726f + 4.22806245e-5f * Temp + 4.20481691e-8f * Temp*Temp ) / ( 1.0f - 2.89741816e-5f * Temp + 1.61456053e-7f * Temp*Temp ); float x = 3*u / ( 2*u - 8*v + 4 ); float y = 2*v / ( 2*u - 8*v + 4 ); float z = 1 - x - y; float Y = 1; float X = Y/y * x; float Z = Y/y * z; float3x3 XYZtoRGB = float3x3( float3(3.2404542, -1.5371385, -0.4985314), float3(-0.9692660, 1.8760108, 0.0415560), float3(0.0556434, -0.2040259, 1.0572252) ); return XYZtoRGB * float3( X, Y, Z ) * math::pow( 0.0004 * Temp, 4 ); } export float per_instance_random(uniform texture_2d PerlinNoiseGradientTexture, int NumberInstances) [[ anno::description("Per Instance Random"), anno::noinline() ]] { float weight = state::object_id() / float(NumberInstances); return NumberInstances == 0 ? 0.0 : tex::lookup_float4(PerlinNoiseGradientTexture, float2(weight, 1.0 - weight), tex::wrap_repeat, tex::wrap_repeat).x; } //------------------ Hair from UE4 ----------------------- float3 hair_absorption_to_color(float3 A) { const float B = 0.3f; float b2 = B * B; float b3 = B * b2; float b4 = b2 * b2; float b5 = B * b4; float D = (5.969f - 0.215f * B + 2.532f * b2 - 10.73f * b3 + 5.574f * b4 + 0.245f * b5); return math::exp(-math::sqrt(A) * D); } float3 hair_color_to_absorption(float3 C) { const float B = 0.3f; float b2 = B * B; float b3 = B * b2; float b4 = b2 * b2; float b5 = B * b4; float D = (5.969f - 0.215f * B + 2.532f * b2 - 10.73f * b3 + 5.574f * b4 + 0.245f * b5); return math::pow(math::log(C) / D, 2.0f); } export float3 get_hair_color_from_melanin(float InMelanin, float InRedness, float3 InDyeColor) [[ anno::description("Hair Color") ]] { InMelanin = math::saturate(InMelanin); InRedness = math::saturate(InRedness); float Melanin = -math::log(math::max(1 - InMelanin, 0.0001f)); float Eumelanin = Melanin * (1 - InRedness); float Pheomelanin = Melanin * InRedness; float3 DyeAbsorption = hair_color_to_absorption(math::saturate(InDyeColor)); float3 Absorption = Eumelanin * float3(0.506f, 0.841f, 1.653f) + Pheomelanin * float3(0.343f, 0.733f, 1.924f); return hair_absorption_to_color(Absorption + DyeAbsorption); } export float3 local_object_bounds_min() [[ anno::description("Local Object Bounds Min"), anno::noinline() ]] { return float3(0.0); } export float3 local_object_bounds_max() [[ anno::description("Local Object Bounds Max"), anno::noinline() ]] { return float3(100.0); } export float3 object_bounds() [[ anno::description("Object Bounds"), anno::noinline() ]] { return float3(100.0); } export float object_radius() [[ anno::description("Object Radius"), anno::noinline() ]] { return 100.0f; } export float3 object_world_position(uniform bool up_z = true) [[ anno::description("Object World Position"), anno::noinline() ]] { return convert_to_left_hand(state::transform_point(state::coordinate_internal,state::coordinate_world,state::position()), up_z)*state::meters_per_scene_unit()*100.0; } export float3 object_orientation() [[ anno::description("Object Orientation"), anno::noinline() ]] { return float3(0); } export float rcp(float x) [[ anno::description("hlsl rcp"), anno::noinline() ]] { return 1.0f / x; } export float2 rcp(float2 x) [[ anno::description("hlsl rcp"), anno::noinline() ]] { return 1.0f / x; } export float3 rcp(float3 x) [[ anno::description("hlsl rcp"), anno::noinline() ]] { return 1.0f / x; } export float4 rcp(float4 x) [[ anno::description("hlsl rcp"), anno::noinline() ]] { return 1.0f / x; } export int BitFieldExtractI32(int Data, int Size, int Offset) [[ anno::description("BitFieldExtractI32 int"), anno::noinline() ]] { Size &= 3; Offset &= 3; if (Size == 0) return 0; else if (Offset + Size < 32) return (Data << (32 - Size - Offset)) >> (32 - Size); else return Data >> Offset; } export int BitFieldExtractI32(float Data, float Size, float Offset) [[ anno::description("BitFieldExtractI32 float"), anno::noinline() ]] { return BitFieldExtractI32(int(Data), int(Size), int(Offset)); } export int BitFieldExtractU32(float Data, float Size, float Offset) [[ anno::description("BitFieldExtractU32 float"), anno::noinline() ]] { return BitFieldExtractI32(Data, Size, Offset); } export int BitFieldExtractU32(int Data, int Size, int Offset) [[ anno::description("BitFieldExtractU32 int"), anno::noinline() ]] { return BitFieldExtractI32(Data, Size, Offset); } export float3 EyeAdaptationInverseLookup(float3 LightValue, float Alpha) [[ anno::description("EyeAdaptationInverseLookup"), anno::noinline() ]] { float Adaptation = 1.0f; // When Alpha=0.0, we want to multiply by 1.0. when Alpha = 1.0, we want to multiply by 1/Adaptation. // So the lerped value is: // LerpLogScale = Lerp(log(1),log(1/Adaptaiton),T) // Which is simplified as: // LerpLogScale = Lerp(0,-log(Adaptation),T) // LerpLogScale = -T * logAdaptation; float LerpLogScale = -Alpha * math::log(Adaptation); float Scale = math::exp(LerpLogScale); return LightValue * Scale; }