Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
Arabic
Size:
1K<n<10K
ArXiv:
Tags:
stance-detection
License:
| # Copyright 2022 Mads Kongsbak and Leon Derczynski | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """DataLoader for ANS, an Arabic News Stance corpus""" | |
| import csv | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{, | |
| title = "Stance Prediction and Claim Verification: An {A}rabic Perspective", | |
| author = "Khouja, Jude", | |
| booktitle = "Proceedings of the Third Workshop on Fact Extraction and {VER}ification ({FEVER})", | |
| year = "2020", | |
| address = "Seattle, USA", | |
| publisher = "Association for Computational Linguistics", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The dataset is a collection of news titles in arabic along with paraphrased and corrupted titles. The stance prediction version is a 3-class classification task. Data contains three columns: s1, s2, stance. | |
| """ | |
| _HOMEPAGE = "" | |
| _LICENSE = "apache-2.0" | |
| class ANSStanceConfig(datasets.BuilderConfig): | |
| def __init__(self, **kwargs): | |
| super(ANSStanceConfig, self).__init__(**kwargs) | |
| class ANSStance(datasets.GeneratorBasedBuilder): | |
| """ANS dataset made in triples of (s1, s2, stance)""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| ANSStanceConfig(name="stance", version=VERSION, description=""), | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "s1": datasets.Value("string"), | |
| "s2": datasets.Value("string"), | |
| "stance": datasets.features.ClassLabel( | |
| names=[ | |
| "disagree", | |
| "agree", | |
| "other" | |
| ] | |
| ) | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| train_text = dl_manager.download_and_extract("ans_train.csv") | |
| valid_text = dl_manager.download_and_extract("ans_dev.csv") | |
| test_text = dl_manager.download_and_extract("ans_test.csv") | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_text, "split": "validation"}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| with open(filepath, encoding="utf-8") as f: | |
| reader = csv.DictReader(f, delimiter=",") | |
| guid = 0 | |
| for instance in reader: | |
| instance["s1"] = instance.pop("s1") | |
| instance["s2"] = instance.pop("s2") | |
| instance["stance"] = instance.pop("stance") | |
| instance['id'] = str(guid) | |
| yield guid, instance | |
| guid += 1 |