Datasets:
Tasks:
Token Classification
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
abbreviation-detection
License:
| import os | |
| import datasets | |
| from typing import List | |
| import json | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """ | |
| """ | |
| _DESCRIPTION = """ | |
| This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022. | |
| The dataset can help build sequence labelling models for the task Abbreviation Detection. | |
| """ | |
| class PLODfilteredConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Conll2003""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig forConll2003. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(PLODfilteredConfig, self).__init__(**kwargs) | |
| class PLODfilteredConfig(datasets.GeneratorBasedBuilder): | |
| """PLOD Filtered dataset.""" | |
| BUILDER_CONFIGS = [ | |
| PLODfilteredConfig(name="PLODfiltered", version=datasets.Version("0.0.2"), description="PLOD filtered dataset"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "pos_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "ADJ", | |
| "ADP", | |
| "ADV", | |
| "AUX", | |
| "CONJ", | |
| "CCONJ", | |
| "DET", | |
| "INTJ", | |
| "NOUN", | |
| "NUM", | |
| "PART", | |
| "PRON", | |
| "PROPN", | |
| "PUNCT", | |
| "SCONJ", | |
| "SYM", | |
| "VERB", | |
| "X", | |
| "SPACE" | |
| ] | |
| ) | |
| ), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "B-O", | |
| "B-AC", | |
| "I-AC", | |
| "B-LF", | |
| "I-LF" | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", | |
| citation=_CITATION, | |
| ) | |
| _URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/" | |
| _URLS = { | |
| "train": _URL + "PLOS-train70-filtered-pos_bio.json", | |
| "dev": _URL + "PLOS-val15-filtered-pos_bio.json", | |
| "test": _URL + "PLOS-test15-filtered-pos_bio.json" | |
| } | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| urls_to_download = self._URLS | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | |
| ] | |
| def _generate_examples(self, filepath): | |
| """This function returns the examples in the raw (text) form.""" | |
| logger.info("generating examples from = %s", filepath) | |
| with open(filepath) as f: | |
| plod = json.load(f) | |
| for object in plod: | |
| id_ = int(object['id']) | |
| yield id_, { | |
| "id": str(id_), | |
| "tokens": object['tokens'], | |
| "pos_tags": object['pos_tags'], | |
| "ner_tags": object['ner_tags'], | |
| } |