Duplicate from allenai/SciRIFF
Browse filesCo-authored-by: David Wadden <[email protected]>
- .gitattributes +55 -0
- 16384/test-00000-of-00001.parquet +3 -0
- 16384/train-00000-of-00002.parquet +3 -0
- 16384/train-00001-of-00002.parquet +3 -0
- 16384/validation-00000-of-00001.parquet +3 -0
- 4096/test-00000-of-00001.parquet +3 -0
- 4096/train-00000-of-00001.parquet +3 -0
- 4096/validation-00000-of-00001.parquet +3 -0
- 8192/test-00000-of-00001.parquet +3 -0
- 8192/train-00000-of-00002.parquet +3 -0
- 8192/train-00001-of-00002.parquet +3 -0
- 8192/validation-00000-of-00001.parquet +3 -0
- README.md +285 -0
- card.md +150 -0
.gitattributes
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
# Audio files - uncompressed
|
| 38 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
# Audio files - compressed
|
| 42 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
# Image files - uncompressed
|
| 48 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
# Image files - compressed
|
| 53 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
16384/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e6979f89640cf01df2696bfa5eff5776afaee08e62b05840c037ebb58682dfa
|
| 3 |
+
size 186449261
|
16384/train-00000-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27b36336a103d3da04a67a0e8e04ce9601fc66d023699d339c63c0e1f67f0c70
|
| 3 |
+
size 83306645
|
16384/train-00001-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3bfae6c32f05d6dd179e793e88c1da873fe38008be0ed72bd49f78bdb90c493
|
| 3 |
+
size 211584478
|
16384/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68e185192e2b2f05168cc137621eb0011e55f69279828f475116c189045f2eab
|
| 3 |
+
size 142555851
|
4096/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c9140b5a8d2e2ccf4ec0b133fabcc1f5d41e64649bd8e0e08b5fd46771065f7e
|
| 3 |
+
size 74656716
|
4096/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:300bca22ad0dddb1b0a1502e37e6bd3124a0a2a613ffc78cb5c6f524e1a69ebc
|
| 3 |
+
size 170925815
|
4096/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20682f1832839b5eb66de73fe9fa0af9b8d15828a452cc0366ecced336956b0e
|
| 3 |
+
size 63233119
|
8192/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20a51a35e585ea1c46c8e1c2eef97669f340feb48e477f34679f6ef66f996228
|
| 3 |
+
size 134195801
|
8192/train-00000-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97dbfb189d884267f97e77f17ae0aa57d4acf07815d3f6666506f3baa53585d6
|
| 3 |
+
size 66514991
|
8192/train-00001-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c3810e0d9be4f1c72f011f9edce0cac995ad994fe7f38dd54fbd5cf008dcebc
|
| 3 |
+
size 178398199
|
8192/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:976ff206e03a3c9fc4f019b2e064d9bd549bea319f9fc375c55a00ec05dbfd19
|
| 3 |
+
size 112290402
|
README.md
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
dataset_info:
|
| 3 |
+
- config_name: '16384'
|
| 4 |
+
features:
|
| 5 |
+
- name: input
|
| 6 |
+
dtype: string
|
| 7 |
+
- name: output
|
| 8 |
+
dtype: string
|
| 9 |
+
- name: metadata
|
| 10 |
+
struct:
|
| 11 |
+
- name: domains
|
| 12 |
+
sequence: string
|
| 13 |
+
- name: input_context
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: output_context
|
| 16 |
+
dtype: string
|
| 17 |
+
- name: source_type
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: task_family
|
| 20 |
+
dtype: string
|
| 21 |
+
- name: _instance_id
|
| 22 |
+
dtype: string
|
| 23 |
+
splits:
|
| 24 |
+
- name: train
|
| 25 |
+
num_bytes: 651887545
|
| 26 |
+
num_examples: 72646
|
| 27 |
+
- name: validation
|
| 28 |
+
num_bytes: 316306085
|
| 29 |
+
num_examples: 34621
|
| 30 |
+
- name: test
|
| 31 |
+
num_bytes: 422473879
|
| 32 |
+
num_examples: 41909
|
| 33 |
+
download_size: 623896235
|
| 34 |
+
dataset_size: 1390667509
|
| 35 |
+
- config_name: '4096'
|
| 36 |
+
features:
|
| 37 |
+
- name: input
|
| 38 |
+
dtype: string
|
| 39 |
+
- name: output
|
| 40 |
+
dtype: string
|
| 41 |
+
- name: metadata
|
| 42 |
+
struct:
|
| 43 |
+
- name: domains
|
| 44 |
+
sequence: string
|
| 45 |
+
- name: input_context
|
| 46 |
+
dtype: string
|
| 47 |
+
- name: output_context
|
| 48 |
+
dtype: string
|
| 49 |
+
- name: source_type
|
| 50 |
+
dtype: string
|
| 51 |
+
- name: task_family
|
| 52 |
+
dtype: string
|
| 53 |
+
- name: _instance_id
|
| 54 |
+
dtype: string
|
| 55 |
+
splits:
|
| 56 |
+
- name: train
|
| 57 |
+
num_bytes: 388072842
|
| 58 |
+
num_examples: 70521
|
| 59 |
+
- name: validation
|
| 60 |
+
num_bytes: 147030710
|
| 61 |
+
num_examples: 30736
|
| 62 |
+
- name: test
|
| 63 |
+
num_bytes: 186329809
|
| 64 |
+
num_examples: 35875
|
| 65 |
+
download_size: 308815650
|
| 66 |
+
dataset_size: 721433361
|
| 67 |
+
- config_name: '8192'
|
| 68 |
+
features:
|
| 69 |
+
- name: input
|
| 70 |
+
dtype: string
|
| 71 |
+
- name: output
|
| 72 |
+
dtype: string
|
| 73 |
+
- name: metadata
|
| 74 |
+
struct:
|
| 75 |
+
- name: domains
|
| 76 |
+
sequence: string
|
| 77 |
+
- name: input_context
|
| 78 |
+
dtype: string
|
| 79 |
+
- name: output_context
|
| 80 |
+
dtype: string
|
| 81 |
+
- name: source_type
|
| 82 |
+
dtype: string
|
| 83 |
+
- name: task_family
|
| 84 |
+
dtype: string
|
| 85 |
+
- name: _instance_id
|
| 86 |
+
dtype: string
|
| 87 |
+
splits:
|
| 88 |
+
- name: train
|
| 89 |
+
num_bytes: 546901470
|
| 90 |
+
num_examples: 72367
|
| 91 |
+
- name: validation
|
| 92 |
+
num_bytes: 252982177
|
| 93 |
+
num_examples: 34001
|
| 94 |
+
- name: test
|
| 95 |
+
num_bytes: 313157272
|
| 96 |
+
num_examples: 40064
|
| 97 |
+
download_size: 491399393
|
| 98 |
+
dataset_size: 1113040919
|
| 99 |
+
configs:
|
| 100 |
+
- config_name: '16384'
|
| 101 |
+
data_files:
|
| 102 |
+
- split: train
|
| 103 |
+
path: 16384/train-*
|
| 104 |
+
- split: validation
|
| 105 |
+
path: 16384/validation-*
|
| 106 |
+
- split: test
|
| 107 |
+
path: 16384/test-*
|
| 108 |
+
- config_name: '4096'
|
| 109 |
+
data_files:
|
| 110 |
+
- split: train
|
| 111 |
+
path: 4096/train-*
|
| 112 |
+
- split: validation
|
| 113 |
+
path: 4096/validation-*
|
| 114 |
+
- split: test
|
| 115 |
+
path: 4096/test-*
|
| 116 |
+
- config_name: '8192'
|
| 117 |
+
data_files:
|
| 118 |
+
- split: train
|
| 119 |
+
path: 8192/train-*
|
| 120 |
+
- split: validation
|
| 121 |
+
path: 8192/validation-*
|
| 122 |
+
- split: test
|
| 123 |
+
path: 8192/test-*
|
| 124 |
+
license: odc-by
|
| 125 |
+
language:
|
| 126 |
+
- en
|
| 127 |
+
tags:
|
| 128 |
+
- chemistry
|
| 129 |
+
- biomedicine
|
| 130 |
+
- clinical medicine
|
| 131 |
+
- artificial intelligence
|
| 132 |
+
- materials science
|
| 133 |
+
size_categories:
|
| 134 |
+
- 100K<n<1M
|
| 135 |
+
---
|
| 136 |
+
# SciRIFF
|
| 137 |
+
|
| 138 |
+
The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](https://arxiv.org/abs/2406.07835).
|
| 139 |
+
|
| 140 |
+
There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:
|
| 141 |
+
|
| 142 |
+
```python
|
| 143 |
+
import datasets
|
| 144 |
+
ds = datasets.load_dataset("allenai/SciRIFF", "4096")
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the [SciRIFF train mix](https://huggingface.co/datasets/allenai/SciRIFF-train-mix) dataset.
|
| 148 |
+
|
| 149 |
+
**Table of Contents**
|
| 150 |
+
|
| 151 |
+
- [Dataset details](#dataset-details)
|
| 152 |
+
- [License](#license)
|
| 153 |
+
- [Task provenance](#task-provenance)
|
| 154 |
+
- [Task metadata](#task-metadata)
|
| 155 |
+
|
| 156 |
+
## Dataset details
|
| 157 |
+
|
| 158 |
+
Each instance in SciRIFF has the following fields:
|
| 159 |
+
|
| 160 |
+
- `input`: Task input (i.e. user message).
|
| 161 |
+
- `output`: Task output (i.e. expected model response).
|
| 162 |
+
- `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
|
| 163 |
+
- `metadata`: Task metadata. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
|
| 164 |
+
- `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
|
| 165 |
+
- `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
|
| 166 |
+
- `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
|
| 167 |
+
- `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
|
| 168 |
+
- `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
|
| 169 |
+
|
| 170 |
+
## License
|
| 171 |
+
|
| 172 |
+
SciRIFF is licensed under `ODC-By`. Licenses of the datasets from which SciRIFF is derived are listed [below](#task-provenance).
|
| 173 |
+
|
| 174 |
+
## Task provenance
|
| 175 |
+
|
| 176 |
+
SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
|
| 177 |
+
|
| 178 |
+
| SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
|
| 179 |
+
| :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
|
| 180 |
+
| `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
|
| 181 |
+
| `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
|
| 182 |
+
| `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
|
| 183 |
+
| `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
|
| 184 |
+
| `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
|
| 185 |
+
| `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
|
| 186 |
+
| `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
|
| 187 |
+
| `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
|
| 188 |
+
| `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
|
| 189 |
+
| `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
|
| 190 |
+
| `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
|
| 191 |
+
| `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
|
| 192 |
+
| `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
|
| 193 |
+
| `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
|
| 194 |
+
| `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
|
| 195 |
+
| `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
|
| 196 |
+
| `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
|
| 197 |
+
| `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
|
| 198 |
+
| `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
|
| 199 |
+
| `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
|
| 200 |
+
| `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
|
| 201 |
+
| `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
|
| 202 |
+
| `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
|
| 203 |
+
| `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
|
| 204 |
+
| `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
|
| 205 |
+
| `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
|
| 206 |
+
| `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
|
| 207 |
+
| `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
|
| 208 |
+
| `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
|
| 209 |
+
| `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
|
| 210 |
+
| `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
|
| 211 |
+
| `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
|
| 212 |
+
| `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
|
| 213 |
+
| `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
|
| 214 |
+
| `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
|
| 215 |
+
| `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
|
| 216 |
+
| `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
|
| 217 |
+
| `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
|
| 218 |
+
| `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
|
| 219 |
+
| `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
|
| 220 |
+
| `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
|
| 221 |
+
| `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
|
| 222 |
+
| `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
|
| 223 |
+
| `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
|
| 224 |
+
| `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
|
| 225 |
+
|
| 226 |
+
## Task metadata
|
| 227 |
+
|
| 228 |
+
Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
|
| 229 |
+
|
| 230 |
+
| SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
|
| 231 |
+
| :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
|
| 232 |
+
| `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
|
| 233 |
+
| `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 234 |
+
| `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
|
| 235 |
+
| `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
|
| 236 |
+
| `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
|
| 237 |
+
| `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
|
| 238 |
+
| `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
|
| 239 |
+
| `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
|
| 240 |
+
| `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 241 |
+
| `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 242 |
+
| `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 243 |
+
| `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 244 |
+
| `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
|
| 245 |
+
| `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
|
| 246 |
+
| `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
|
| 247 |
+
| `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
|
| 248 |
+
| `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
|
| 249 |
+
| `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
|
| 250 |
+
| `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
|
| 251 |
+
| `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
|
| 252 |
+
| `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
|
| 253 |
+
| `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 254 |
+
| `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
|
| 255 |
+
| `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
|
| 256 |
+
| `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
|
| 257 |
+
| `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 258 |
+
| `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 259 |
+
| `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
|
| 260 |
+
| `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
|
| 261 |
+
| `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 262 |
+
| `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
|
| 263 |
+
| `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
|
| 264 |
+
| `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
|
| 265 |
+
| `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
|
| 266 |
+
| `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
|
| 267 |
+
| `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
|
| 268 |
+
| `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 269 |
+
| `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
|
| 270 |
+
| `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 271 |
+
| `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
|
| 272 |
+
| `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
|
| 273 |
+
| `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
|
| 274 |
+
| `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
|
| 275 |
+
| `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
|
| 276 |
+
| `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
|
| 277 |
+
| `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 278 |
+
| `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 279 |
+
| `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
|
| 280 |
+
| `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 281 |
+
| `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
|
| 282 |
+
| `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
|
| 283 |
+
| `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
|
| 284 |
+
| `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
|
| 285 |
+
| `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |
|
card.md
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SciRIFF
|
| 2 |
+
|
| 3 |
+
The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](https://arxiv.org/abs/2406.07835).
|
| 4 |
+
|
| 5 |
+
There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:
|
| 6 |
+
|
| 7 |
+
```python
|
| 8 |
+
import datasets
|
| 9 |
+
ds = datasets.load_dataset("allenai/SciRIFF", "4096")
|
| 10 |
+
```
|
| 11 |
+
|
| 12 |
+
Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the [SciRIFF train mix](https://huggingface.co/datasets/allenai/SciRIFF-train-mix) dataset.
|
| 13 |
+
|
| 14 |
+
**Table of Contents**
|
| 15 |
+
|
| 16 |
+
- [Dataset details](#dataset-details)
|
| 17 |
+
- [License](#license)
|
| 18 |
+
- [Task provenance](#task-provenance)
|
| 19 |
+
- [Task metadata](#task-metadata)
|
| 20 |
+
|
| 21 |
+
## Dataset details
|
| 22 |
+
|
| 23 |
+
Each instance in SciRIFF has the following fields:
|
| 24 |
+
|
| 25 |
+
- `input`: Task input (i.e. user message).
|
| 26 |
+
- `output`: Task output (i.e. expected model response).
|
| 27 |
+
- `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
|
| 28 |
+
- `metadata`: Task metadata. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
|
| 29 |
+
- `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
|
| 30 |
+
- `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
|
| 31 |
+
- `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
|
| 32 |
+
- `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
|
| 33 |
+
- `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
|
| 34 |
+
|
| 35 |
+
## License
|
| 36 |
+
|
| 37 |
+
SciRIFF is licensed under `ODC-By`. Licenses of the datasets from which SciRIFF is derived are listed [below](#task-provenance).
|
| 38 |
+
|
| 39 |
+
## Task provenance
|
| 40 |
+
|
| 41 |
+
SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
|
| 42 |
+
|
| 43 |
+
| SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
|
| 44 |
+
| :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
|
| 45 |
+
| `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
|
| 46 |
+
| `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
|
| 47 |
+
| `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
|
| 48 |
+
| `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
|
| 49 |
+
| `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
|
| 50 |
+
| `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
|
| 51 |
+
| `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
|
| 52 |
+
| `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
|
| 53 |
+
| `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
|
| 54 |
+
| `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
|
| 55 |
+
| `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
|
| 56 |
+
| `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
|
| 57 |
+
| `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
|
| 58 |
+
| `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
|
| 59 |
+
| `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
|
| 60 |
+
| `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
|
| 61 |
+
| `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
|
| 62 |
+
| `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
|
| 63 |
+
| `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
|
| 64 |
+
| `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
|
| 65 |
+
| `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
|
| 66 |
+
| `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
|
| 67 |
+
| `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
|
| 68 |
+
| `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
|
| 69 |
+
| `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
|
| 70 |
+
| `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
|
| 71 |
+
| `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
|
| 72 |
+
| `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
|
| 73 |
+
| `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
|
| 74 |
+
| `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
|
| 75 |
+
| `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
|
| 76 |
+
| `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
|
| 77 |
+
| `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
|
| 78 |
+
| `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
|
| 79 |
+
| `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
|
| 80 |
+
| `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
|
| 81 |
+
| `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
|
| 82 |
+
| `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
|
| 83 |
+
| `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
|
| 84 |
+
| `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
|
| 85 |
+
| `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
|
| 86 |
+
| `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
|
| 87 |
+
| `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
|
| 88 |
+
| `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
|
| 89 |
+
| `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
|
| 90 |
+
|
| 91 |
+
## Task metadata
|
| 92 |
+
|
| 93 |
+
Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
|
| 94 |
+
|
| 95 |
+
| SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
|
| 96 |
+
| :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
|
| 97 |
+
| `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
|
| 98 |
+
| `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 99 |
+
| `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
|
| 100 |
+
| `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
|
| 101 |
+
| `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
|
| 102 |
+
| `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
|
| 103 |
+
| `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
|
| 104 |
+
| `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
|
| 105 |
+
| `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 106 |
+
| `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 107 |
+
| `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 108 |
+
| `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 109 |
+
| `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
|
| 110 |
+
| `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
|
| 111 |
+
| `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
|
| 112 |
+
| `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
|
| 113 |
+
| `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
|
| 114 |
+
| `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
|
| 115 |
+
| `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
|
| 116 |
+
| `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
|
| 117 |
+
| `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
|
| 118 |
+
| `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 119 |
+
| `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
|
| 120 |
+
| `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
|
| 121 |
+
| `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
|
| 122 |
+
| `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 123 |
+
| `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 124 |
+
| `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
|
| 125 |
+
| `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
|
| 126 |
+
| `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 127 |
+
| `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
|
| 128 |
+
| `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
|
| 129 |
+
| `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
|
| 130 |
+
| `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
|
| 131 |
+
| `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
|
| 132 |
+
| `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
|
| 133 |
+
| `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 134 |
+
| `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
|
| 135 |
+
| `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
|
| 136 |
+
| `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
|
| 137 |
+
| `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
|
| 138 |
+
| `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
|
| 139 |
+
| `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
|
| 140 |
+
| `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
|
| 141 |
+
| `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
|
| 142 |
+
| `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 143 |
+
| `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 144 |
+
| `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
|
| 145 |
+
| `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
|
| 146 |
+
| `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
|
| 147 |
+
| `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
|
| 148 |
+
| `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
|
| 149 |
+
| `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
|
| 150 |
+
| `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |
|