Datasets:
tldc
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
jbesgen dwadden commited on
Commit
56bb8af
·
verified ·
0 Parent(s):

Duplicate from allenai/SciRIFF

Browse files

Co-authored-by: David Wadden <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
16384/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e6979f89640cf01df2696bfa5eff5776afaee08e62b05840c037ebb58682dfa
3
+ size 186449261
16384/train-00000-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27b36336a103d3da04a67a0e8e04ce9601fc66d023699d339c63c0e1f67f0c70
3
+ size 83306645
16384/train-00001-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3bfae6c32f05d6dd179e793e88c1da873fe38008be0ed72bd49f78bdb90c493
3
+ size 211584478
16384/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68e185192e2b2f05168cc137621eb0011e55f69279828f475116c189045f2eab
3
+ size 142555851
4096/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9140b5a8d2e2ccf4ec0b133fabcc1f5d41e64649bd8e0e08b5fd46771065f7e
3
+ size 74656716
4096/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:300bca22ad0dddb1b0a1502e37e6bd3124a0a2a613ffc78cb5c6f524e1a69ebc
3
+ size 170925815
4096/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20682f1832839b5eb66de73fe9fa0af9b8d15828a452cc0366ecced336956b0e
3
+ size 63233119
8192/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20a51a35e585ea1c46c8e1c2eef97669f340feb48e477f34679f6ef66f996228
3
+ size 134195801
8192/train-00000-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97dbfb189d884267f97e77f17ae0aa57d4acf07815d3f6666506f3baa53585d6
3
+ size 66514991
8192/train-00001-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c3810e0d9be4f1c72f011f9edce0cac995ad994fe7f38dd54fbd5cf008dcebc
3
+ size 178398199
8192/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:976ff206e03a3c9fc4f019b2e064d9bd549bea319f9fc375c55a00ec05dbfd19
3
+ size 112290402
README.md ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ - config_name: '16384'
4
+ features:
5
+ - name: input
6
+ dtype: string
7
+ - name: output
8
+ dtype: string
9
+ - name: metadata
10
+ struct:
11
+ - name: domains
12
+ sequence: string
13
+ - name: input_context
14
+ dtype: string
15
+ - name: output_context
16
+ dtype: string
17
+ - name: source_type
18
+ dtype: string
19
+ - name: task_family
20
+ dtype: string
21
+ - name: _instance_id
22
+ dtype: string
23
+ splits:
24
+ - name: train
25
+ num_bytes: 651887545
26
+ num_examples: 72646
27
+ - name: validation
28
+ num_bytes: 316306085
29
+ num_examples: 34621
30
+ - name: test
31
+ num_bytes: 422473879
32
+ num_examples: 41909
33
+ download_size: 623896235
34
+ dataset_size: 1390667509
35
+ - config_name: '4096'
36
+ features:
37
+ - name: input
38
+ dtype: string
39
+ - name: output
40
+ dtype: string
41
+ - name: metadata
42
+ struct:
43
+ - name: domains
44
+ sequence: string
45
+ - name: input_context
46
+ dtype: string
47
+ - name: output_context
48
+ dtype: string
49
+ - name: source_type
50
+ dtype: string
51
+ - name: task_family
52
+ dtype: string
53
+ - name: _instance_id
54
+ dtype: string
55
+ splits:
56
+ - name: train
57
+ num_bytes: 388072842
58
+ num_examples: 70521
59
+ - name: validation
60
+ num_bytes: 147030710
61
+ num_examples: 30736
62
+ - name: test
63
+ num_bytes: 186329809
64
+ num_examples: 35875
65
+ download_size: 308815650
66
+ dataset_size: 721433361
67
+ - config_name: '8192'
68
+ features:
69
+ - name: input
70
+ dtype: string
71
+ - name: output
72
+ dtype: string
73
+ - name: metadata
74
+ struct:
75
+ - name: domains
76
+ sequence: string
77
+ - name: input_context
78
+ dtype: string
79
+ - name: output_context
80
+ dtype: string
81
+ - name: source_type
82
+ dtype: string
83
+ - name: task_family
84
+ dtype: string
85
+ - name: _instance_id
86
+ dtype: string
87
+ splits:
88
+ - name: train
89
+ num_bytes: 546901470
90
+ num_examples: 72367
91
+ - name: validation
92
+ num_bytes: 252982177
93
+ num_examples: 34001
94
+ - name: test
95
+ num_bytes: 313157272
96
+ num_examples: 40064
97
+ download_size: 491399393
98
+ dataset_size: 1113040919
99
+ configs:
100
+ - config_name: '16384'
101
+ data_files:
102
+ - split: train
103
+ path: 16384/train-*
104
+ - split: validation
105
+ path: 16384/validation-*
106
+ - split: test
107
+ path: 16384/test-*
108
+ - config_name: '4096'
109
+ data_files:
110
+ - split: train
111
+ path: 4096/train-*
112
+ - split: validation
113
+ path: 4096/validation-*
114
+ - split: test
115
+ path: 4096/test-*
116
+ - config_name: '8192'
117
+ data_files:
118
+ - split: train
119
+ path: 8192/train-*
120
+ - split: validation
121
+ path: 8192/validation-*
122
+ - split: test
123
+ path: 8192/test-*
124
+ license: odc-by
125
+ language:
126
+ - en
127
+ tags:
128
+ - chemistry
129
+ - biomedicine
130
+ - clinical medicine
131
+ - artificial intelligence
132
+ - materials science
133
+ size_categories:
134
+ - 100K<n<1M
135
+ ---
136
+ # SciRIFF
137
+
138
+ The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](https://arxiv.org/abs/2406.07835).
139
+
140
+ There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:
141
+
142
+ ```python
143
+ import datasets
144
+ ds = datasets.load_dataset("allenai/SciRIFF", "4096")
145
+ ```
146
+
147
+ Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the [SciRIFF train mix](https://huggingface.co/datasets/allenai/SciRIFF-train-mix) dataset.
148
+
149
+ **Table of Contents**
150
+
151
+ - [Dataset details](#dataset-details)
152
+ - [License](#license)
153
+ - [Task provenance](#task-provenance)
154
+ - [Task metadata](#task-metadata)
155
+
156
+ ## Dataset details
157
+
158
+ Each instance in SciRIFF has the following fields:
159
+
160
+ - `input`: Task input (i.e. user message).
161
+ - `output`: Task output (i.e. expected model response).
162
+ - `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
163
+ - `metadata`: Task metadata. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
164
+ - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
165
+ - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
166
+ - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
167
+ - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
168
+ - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
169
+
170
+ ## License
171
+
172
+ SciRIFF is licensed under `ODC-By`. Licenses of the datasets from which SciRIFF is derived are listed [below](#task-provenance).
173
+
174
+ ## Task provenance
175
+
176
+ SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
177
+
178
+ | SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
179
+ | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
180
+ | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
181
+ | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
182
+ | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
183
+ | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
184
+ | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
185
+ | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
186
+ | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
187
+ | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
188
+ | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
189
+ | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
190
+ | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
191
+ | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
192
+ | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
193
+ | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
194
+ | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
195
+ | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
196
+ | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
197
+ | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
198
+ | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
199
+ | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
200
+ | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
201
+ | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
202
+ | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
203
+ | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
204
+ | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
205
+ | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
206
+ | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
207
+ | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
208
+ | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
209
+ | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
210
+ | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
211
+ | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
212
+ | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
213
+ | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
214
+ | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
215
+ | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
216
+ | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
217
+ | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
218
+ | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
219
+ | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
220
+ | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
221
+ | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
222
+ | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
223
+ | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
224
+ | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
225
+
226
+ ## Task metadata
227
+
228
+ Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
229
+
230
+ | SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
231
+ | :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
232
+ | `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
233
+ | `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
234
+ | `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
235
+ | `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
236
+ | `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
237
+ | `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
238
+ | `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
239
+ | `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
240
+ | `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
241
+ | `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
242
+ | `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
243
+ | `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
244
+ | `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
245
+ | `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
246
+ | `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
247
+ | `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
248
+ | `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
249
+ | `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
250
+ | `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
251
+ | `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
252
+ | `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
253
+ | `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
254
+ | `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
255
+ | `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
256
+ | `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
257
+ | `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
258
+ | `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
259
+ | `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
260
+ | `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
261
+ | `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
262
+ | `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
263
+ | `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
264
+ | `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
265
+ | `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
266
+ | `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
267
+ | `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
268
+ | `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
269
+ | `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
270
+ | `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
271
+ | `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
272
+ | `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
273
+ | `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
274
+ | `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
275
+ | `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
276
+ | `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
277
+ | `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
278
+ | `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
279
+ | `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
280
+ | `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
281
+ | `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
282
+ | `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
283
+ | `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
284
+ | `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
285
+ | `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |
card.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SciRIFF
2
+
3
+ The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](https://arxiv.org/abs/2406.07835).
4
+
5
+ There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:
6
+
7
+ ```python
8
+ import datasets
9
+ ds = datasets.load_dataset("allenai/SciRIFF", "4096")
10
+ ```
11
+
12
+ Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the [SciRIFF train mix](https://huggingface.co/datasets/allenai/SciRIFF-train-mix) dataset.
13
+
14
+ **Table of Contents**
15
+
16
+ - [Dataset details](#dataset-details)
17
+ - [License](#license)
18
+ - [Task provenance](#task-provenance)
19
+ - [Task metadata](#task-metadata)
20
+
21
+ ## Dataset details
22
+
23
+ Each instance in SciRIFF has the following fields:
24
+
25
+ - `input`: Task input (i.e. user message).
26
+ - `output`: Task output (i.e. expected model response).
27
+ - `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
28
+ - `metadata`: Task metadata. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
29
+ - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
30
+ - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
31
+ - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
32
+ - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
33
+ - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
34
+
35
+ ## License
36
+
37
+ SciRIFF is licensed under `ODC-By`. Licenses of the datasets from which SciRIFF is derived are listed [below](#task-provenance).
38
+
39
+ ## Task provenance
40
+
41
+ SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
42
+
43
+ | SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
44
+ | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
45
+ | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
46
+ | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
47
+ | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
48
+ | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
49
+ | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
50
+ | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
51
+ | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
52
+ | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
53
+ | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
54
+ | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
55
+ | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
56
+ | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
57
+ | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
58
+ | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
59
+ | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
60
+ | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
61
+ | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
62
+ | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
63
+ | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
64
+ | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
65
+ | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
66
+ | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
67
+ | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
68
+ | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
69
+ | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
70
+ | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
71
+ | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
72
+ | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
73
+ | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
74
+ | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
75
+ | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
76
+ | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
77
+ | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
78
+ | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
79
+ | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
80
+ | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
81
+ | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
82
+ | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
83
+ | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
84
+ | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
85
+ | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
86
+ | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
87
+ | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
88
+ | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
89
+ | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
90
+
91
+ ## Task metadata
92
+
93
+ Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
94
+
95
+ | SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
96
+ | :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
97
+ | `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
98
+ | `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
99
+ | `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
100
+ | `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
101
+ | `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
102
+ | `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
103
+ | `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
104
+ | `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
105
+ | `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
106
+ | `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
107
+ | `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
108
+ | `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
109
+ | `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
110
+ | `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
111
+ | `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
112
+ | `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
113
+ | `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
114
+ | `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
115
+ | `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
116
+ | `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
117
+ | `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
118
+ | `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
119
+ | `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
120
+ | `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
121
+ | `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
122
+ | `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
123
+ | `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
124
+ | `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
125
+ | `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
126
+ | `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
127
+ | `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
128
+ | `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
129
+ | `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
130
+ | `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
131
+ | `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
132
+ | `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
133
+ | `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
134
+ | `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
135
+ | `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
136
+ | `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
137
+ | `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
138
+ | `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
139
+ | `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
140
+ | `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
141
+ | `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
142
+ | `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
143
+ | `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
144
+ | `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
145
+ | `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
146
+ | `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
147
+ | `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
148
+ | `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
149
+ | `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
150
+ | `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |