--- dataset_info: features: - name: file_url dtype: string - name: approver_id dtype: float64 - name: bit_flags dtype: int64 - name: created_at dtype: string - name: down_score dtype: int64 - name: fav_count dtype: int64 - name: file_ext dtype: string - name: file_size dtype: int64 - name: has_active_children dtype: bool - name: has_children dtype: bool - name: has_large dtype: bool - name: has_visible_children dtype: bool - name: image_height dtype: int64 - name: image_width dtype: int64 - name: is_banned dtype: bool - name: is_deleted dtype: bool - name: is_flagged dtype: bool - name: is_pending dtype: bool - name: large_file_url dtype: string - name: last_comment_bumped_at dtype: string - name: last_commented_at dtype: string - name: last_noted_at dtype: string - name: md5 dtype: string - name: media_asset_created_at dtype: string - name: media_asset_duration dtype: float64 - name: media_asset_file_ext dtype: string - name: media_asset_file_key dtype: string - name: media_asset_file_size dtype: int64 - name: media_asset_id dtype: int64 - name: media_asset_image_height dtype: int64 - name: media_asset_image_width dtype: int64 - name: media_asset_is_public dtype: bool - name: media_asset_md5 dtype: string - name: media_asset_pixel_hash dtype: string - name: media_asset_status dtype: string - name: media_asset_updated_at dtype: string - name: media_asset_variants dtype: string - name: parent_id dtype: float64 - name: pixiv_id dtype: float64 - name: preview_file_url dtype: string - name: rating dtype: string - name: score dtype: int64 - name: source dtype: string - name: tag_count dtype: int64 - name: tag_count_artist dtype: int64 - name: tag_count_character dtype: int64 - name: tag_count_copyright dtype: int64 - name: tag_count_general dtype: int64 - name: tag_count_meta dtype: int64 - name: tag_string dtype: string - name: tag_string_artist dtype: string - name: tag_string_character dtype: string - name: tag_string_copyright dtype: string - name: tag_string_general dtype: string - name: tag_string_meta dtype: string - name: up_score dtype: int64 - name: updated_at dtype: string - name: uploader_id dtype: int64 - name: id dtype: int64 splits: - name: train num_bytes: 21271155853 num_examples: 9113285 download_size: 7601577894 dataset_size: 21271155853 configs: - config_name: default data_files: - split: train path: data/train-* license: mit task_categories: - text-to-image - image-classification language: - en - ja pretty_name: Danbooru 2025 Metadata size_categories: - 1M Danbooru Logo

🎨 Danbooru 2025 Metadata

Latest Post ID: 9,158,800
(as of Apr 16, 2025)

--- 📁 **About the Dataset** This dataset provides structured metadata for user-submitted images on **Danbooru**, a large-scale imageboard focused on anime-style artwork. Scraping began on **January 2, 2025**, and the data are stored in **Parquet** format for efficient programmatic access. Compared to earlier versions, this snapshot includes: - More consistent tag history tracking - Better coverage of older or previously skipped posts - Reduced presence of unlabeled AI-generated entries --- ## Dataset Overview Each row corresponds to a Danbooru post, with fields including: - Tag list (both general and system-specific) - Upload timestamp - File details (size, extension, resolution) - User stats (favorites, score, etc.) The schema follows Danbooru’s public API structure, and should be familiar to anyone who has worked with their JSON output. **File Format** The metadata are stored in a flat table. Nested dictionaries have been flattened using a consistent naming scheme (`parentkey_childkey`) to aid downstream use in ML pipelines or indexing tools. --- ## Access & Usage You can load the dataset via the Hugging Face `datasets` library: ```python from datasets import load_dataset danbooru_metadata = load_dataset("trojblue/danbooru2025-metadata", split="train") df = danbooru_metadata.to_pandas() ``` Potential use cases include: - Image retrieval systems - Text-to-image alignment tasks - Dataset curation or filtering - Historical or cultural analysis of trends in tagging Be cautious if working in public settings. The dataset contains adult content. --- ## Notable Characteristics - **Single-Snapshot Coverage**: All posts up to the stated ID are included. No need to merge partial scrapes. - **Reduced Tag Drift**: Many historic tag renames and merges are reflected correctly. - **Filtered AI-Generated Posts**: Some attempts were made to identify and exclude unlabeled AI-generated entries, though the process is imperfect. Restricted tags (e.g., certain content filters) are inaccessible without privileged API keys and are therefore missing here. If you need metadata with those tags, you’ll need to integrate previous datasets (such as Danbooru2021) and resolve inconsistencies manually. --- ## Code: Flattening the JSON Included below is a simplified example showing how the raw JSON was transformed: ```python import pandas as pd from pandarallel import pandarallel # Initialize multiprocessing pandarallel.initialize(nb_workers=4, progress_bar=True) def flatten_dict(d, parent_key='', sep='_'): items = [] for k, v in d.items(): new_key = f"{parent_key}{sep}{k}" if parent_key else k if isinstance(v, dict): items.extend(flatten_dict(v, new_key, sep=sep).items()) elif isinstance(v, list): items.append((new_key, ', '.join(map(str, v)))) else: items.append((new_key, v)) return dict(items) def extract_all_illust_info(json_content): return pd.Series(flatten_dict(json_content)) def dicts_to_dataframe_parallel(dicts): df = pd.DataFrame(dicts) return df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1) ``` --- ## Warnings & Considerations - **NSFW Material**: Includes sexually explicit tags or content. Do not deploy without clear filtering and compliance checks. - **Community Bias**: Tags are user-generated and reflect collective subjectivity. Representation may skew or omit. - **Data Licensing**: Image rights remain with original uploaders. This dataset includes metadata only, not media. Review Danbooru’s [Terms of Service](https://danbooru.donmai.us/static/terms_of_service) for reuse constraints. - **Missing Content**: Posts with restricted tags or deleted content may appear with incomplete fields or be absent entirely. --- ## Column Summaries (Sample — Apr 16, 2025) Full schema and additional statistics are viewable on the Hugging Face Dataset Viewer. ### File Information - **file_url**: 8.8 million unique file links - **file_ext**: 9 file types - `'jpg'`: 73.3% - `'png'`: 25.4% - Other types (`mp4`, `gif`, `zip`, etc.): <1.5% combined - **file_size** and **media_asset_file_size** (bytes): - Min: 49 - Max: ~106MB - Avg: ~1.5MB ### Image Dimensions - **image_width**: - Min: 1 px - Max: 35,102 px - Mean: 1,471 px - **image_height**: - Min: 1 px - Max: 54,250 px - Mean: 1,760 px (Note: extremely small dimensions may indicate deleted or broken images.) ### Scoring and Engagement - **score** (net = up − down): - Min: −167 - Max: 2,693 - Mean: 26.15 - **up_score**: - Max: 2,700 - Mean: 25.87 - **down_score**: - Min: −179 - Mean: −0.24 - **fav_count**: - Max: 4,458 - Mean: 32.49 ### Rating and Moderation - **rating**: - `'g'` (general, safe): 29.4% - `'s'` (suggestive): 49.5% - `'q'` (questionable): 11.2% - `'e'` (explicit): 9.8% - **is_banned**: 1.13% true - **is_deleted**: 5.34% true - **is_flagged / is_pending**: <0.01% true (rare moderation edge-cases) ### Children & Variations - **has_children**: 10.7% - **has_active_children**: 10.0% - **has_visible_children**: 10.3% - **has_large**: 70.6% of posts are linked to full-res versions ### Tag Breakdown (Tag counts are per post; some posts may have hundreds.) - **tag_count** (total tags): - Avg: 36.3 - **tag_count_artist**: 0.99 avg - **tag_count_character**: 1.62 avg - **tag_count_copyright**: 1.39 avg - **tag_count_general**: 30.0 avg - **tag_count_meta**: 2.3 avg Some outliers contain hundreds of tags—up to 1,250 in total on rare posts. ### Other Fields - **uploader_id** (anonymized integer ID) - **updated_at** (timestamp) — nearly every post has a unique update time (last updated: 2025-04-16 12:15:29.262308)