vedantpuri commited on
Commit
a4c07ed
ยท
verified ยท
1 Parent(s): 74bc788

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +174 -1
README.md CHANGED
@@ -28,7 +28,6 @@ configs:
28
  - split: test
29
  path: data/test-*
30
  ---
31
-
32
  # Laser Powder Bed Fusion (LPBF) Additive Manufacturing Dataset
33
 
34
  As part of our paper **[FLARE: Fast Low-Rank Attention Routing Engine](https://huggingface.co/papers/2508.12594)** ([arXiv:2508.12594](https://arxiv.org/abs/2508.12594)), we release a new **3D field prediction benchmark** derived from numerical simulations of the **Laser Powder Bed Fusion (LPBF)** additive manufacturing process.
@@ -55,6 +54,180 @@ Each sample consists of:
55
 
56
  ---
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ## Source & Generation
59
 
60
  - Geometries are taken from the **Fusion 360 segmentation dataset**.
 
28
  - split: test
29
  path: data/test-*
30
  ---
 
31
  # Laser Powder Bed Fusion (LPBF) Additive Manufacturing Dataset
32
 
33
  As part of our paper **[FLARE: Fast Low-Rank Attention Routing Engine](https://huggingface.co/papers/2508.12594)** ([arXiv:2508.12594](https://arxiv.org/abs/2508.12594)), we release a new **3D field prediction benchmark** derived from numerical simulations of the **Laser Powder Bed Fusion (LPBF)** additive manufacturing process.
 
54
 
55
  ---
56
 
57
+ ## Usage
58
+
59
+ ### Quick Start
60
+
61
+ Load the LPBF dataset using the optimized PyTorch Geometric interface:
62
+
63
+ ```python
64
+ from pdebench.dataset.utils import LPBFDataset
65
+
66
+ # Load train and test datasets
67
+ train_dataset = LPBFDataset(split='train')
68
+ test_dataset = LPBFDataset(split='test')
69
+
70
+ print(f"Train samples: {len(train_dataset)}")
71
+ print(f"Test samples: {len(test_dataset)}")
72
+
73
+ # Access a sample
74
+ sample = train_dataset[0]
75
+ print(f"Nodes: {sample.x.shape}") # [N, 3] - node coordinates
76
+ print(f"Edges: {sample.edge_index.shape}") # [2, E] - edge connectivity
77
+ print(f"Target: {sample.y.shape}") # [N] - Z-displacement values
78
+ print(f"Elements: {sample.elems.shape}") # [M, 8] - hex element connectivity
79
+ ```
80
+
81
+ ### PyTorch DataLoader Integration
82
+
83
+ ```python
84
+ from torch_geometric.loader import DataLoader
85
+
86
+ # Create DataLoader for training
87
+ train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
88
+ test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
89
+
90
+ # Training loop example
91
+ for batch in train_loader:
92
+ # batch.x: [batch_size*N, 3] - node coordinates
93
+ # batch.y: [batch_size*N] - target Z-displacements
94
+ # batch.edge_index: [2, batch_size*E] - edges
95
+ # batch.batch: [batch_size*N] - batch assignment
96
+
97
+ # Your model forward pass here
98
+ pred = model(batch.x, batch.edge_index, batch.batch)
99
+ loss = loss_fn(pred, batch.y)
100
+ ```
101
+
102
+ ### Performance Features
103
+
104
+ - **โšก Fast initialization**: ~0.8s (vs 18s+ for naive approaches)
105
+ - **๐Ÿš€ Efficient loading**: ~8ms per sample access
106
+ - **๐Ÿ’พ Smart caching**: Downloads once, cached locally
107
+ - **๐Ÿ”„ Lazy loading**: Files downloaded only when first accessed
108
+
109
+ ### Data Fields
110
+
111
+ Each sample contains:
112
+ - `x` (pos): Node coordinates [N, 3]
113
+ - `edge_index`: Edge connectivity [2, E]
114
+ - `y`: Target Z-displacement [N]
115
+ - `elems`: Element connectivity [M, 8]
116
+ - `temp`: Temperature field [N]
117
+ - `disp`: Full displacement field [N, 3]
118
+ - `vmstr`: Von Mises stress [N]
119
+ - `metadata`: Simulation metadata
120
+
121
+ ## Implementation
122
+
123
+ ### LPBFDataset Class
124
+
125
+ The optimized `LPBFDataset` implementation with lazy loading and efficient caching:
126
+
127
+ ```python
128
+ import os
129
+ import json
130
+ import numpy as np
131
+ import torch
132
+ import torch_geometric as pyg
133
+ import datasets
134
+ import huggingface_hub
135
+
136
+ class LPBFDataset(pyg.data.Dataset):
137
+ def __init__(self, split='train', transform=None):
138
+ assert split in ['train', 'test'], f"Invalid split: {split}. Must be one of: 'train', 'test'."
139
+
140
+ self.repo_id = 'vedantpuri/LPBF_FLARE'
141
+
142
+ print(f"Initializing {split} dataset...")
143
+
144
+ # Fast initialization: Load dataset index first (lightweight)
145
+ import time
146
+ start_time = time.time()
147
+ self.dataset = datasets.load_dataset(self.repo_id, split=split, keep_in_memory=True)
148
+ dataset_time = time.time() - start_time
149
+ print(f"Dataset index load: {dataset_time:.2f}s")
150
+
151
+ # Lazy cache initialization - only download when needed
152
+ self._cache_dir = None
153
+
154
+ print(f"โœ… Loaded {len(self.dataset)} samples for {split} split")
155
+
156
+ super().__init__(None, transform=transform)
157
+
158
+ @property
159
+ def cache_dir(self):
160
+ """Lazy loading of cache directory - only download when first sample is accessed."""
161
+ if self._cache_dir is None:
162
+ print("Downloading repository files on first access...")
163
+ import time
164
+ start_time = time.time()
165
+ self._cache_dir = huggingface_hub.snapshot_download(self.repo_id, repo_type="dataset")
166
+ download_time = time.time() - start_time
167
+ print(f"Repository download/cache: {download_time:.2f}s")
168
+ print(f"Cache directory: {self._cache_dir}")
169
+ return self._cache_dir
170
+
171
+ def len(self):
172
+ return len(self.dataset)
173
+
174
+ def get(self, idx):
175
+ # Get file path from index
176
+ entry = self.dataset[idx]
177
+ rel_path = entry["file"]
178
+ npz_path = os.path.join(self.cache_dir, rel_path)
179
+
180
+ # Load NPZ file (main bottleneck check)
181
+ data = np.load(npz_path, allow_pickle=True)
182
+ graph = pyg.data.Data()
183
+
184
+ # Convert to tensors efficiently
185
+ for key, value in data.items():
186
+ if key == "_metadata":
187
+ graph["metadata"] = json.loads(value[0])["metadata"]
188
+ else:
189
+ # Use torch.from_numpy for faster conversion when possible
190
+ if value.dtype.kind == "f":
191
+ tensor = torch.from_numpy(value.astype(np.float32))
192
+ else:
193
+ tensor = torch.from_numpy(value.astype(np.int64)) if value.dtype != np.int64 else torch.from_numpy(value)
194
+ graph[key] = tensor
195
+
196
+ # Set standard attributes
197
+ graph.x = graph.pos
198
+ graph.y = graph.disp[:, 2]
199
+
200
+ return graph
201
+ ```
202
+
203
+ ### Key Implementation Features
204
+
205
+ #### ๐Ÿš€ **Lazy Loading Strategy**
206
+ - **Fast initialization** (~0.8s): Only loads lightweight parquet index
207
+ - **Deferred downloads**: Heavy NPZ files downloaded on first sample access
208
+ - **Property-based caching**: `@property cache_dir` ensures files download only when needed
209
+
210
+ #### โšก **Efficient Tensor Conversion**
211
+ ```python
212
+ # Optimized: Direct numpy->torch conversion (zero-copy when possible)
213
+ tensor = torch.from_numpy(value.astype(np.float32))
214
+
215
+ # vs. Slower: torch.tensor() creates new copy
216
+ tensor = torch.tensor(value, dtype=torch.float32)
217
+ ```
218
+
219
+ #### ๐Ÿ’พ **Smart Caching**
220
+ - Uses HuggingFace's built-in caching system
221
+ - Files downloaded once, reused across all dataset instances
222
+ - Automatic cache validation and updates
223
+
224
+ #### ๐ŸŽฏ **Memory Efficiency**
225
+ - No preloading of samples
226
+ - On-demand loading with `np.load()`
227
+ - Minimal memory footprint during initialization
228
+
229
+ ---
230
+
231
  ## Source & Generation
232
 
233
  - Geometries are taken from the **Fusion 360 segmentation dataset**.