--- dataset_name: "CodeReality-EvalSubset" pretty_name: "CodeReality: Evaluation Subset - Deliberately Noisy Code Dataset" tags: - code - software-engineering - robustness - noisy-dataset - evaluation-subset - research-dataset - code-understanding size_categories: - 10GB **⚠️ Not Enterprise-Ready**: This dataset is deliberately noisy and designed for research only. Contains mixed/unknown licenses, possible secrets, potential security vulnerabilities, duplicate code, and experimental repositories. **Requires substantial preprocessing for production use.** > > **Use at your own risk** - this is a research dataset for robustness testing and data curation method development. ## Overview **CodeReality Evaluation Subset** is a curated research subset extracted from the complete CodeReality dataset (3.05TB, 397,475 repositories). This subset contains **2,049 repositories** in **19GB** of data, specifically selected for standardized evaluation and benchmarking of code understanding models on deliberately noisy data. For complete Dataset 3tb, please contact me at vincenzo.gallo77@hotmail.com ### Key Features - ✅ **Curated Selection**: Research value scoring with diversity sampling from 397,475 repositories - ✅ **Research Grade**: Comprehensive analysis with transparent methodology - ✅ **Deliberately Noisy**: Includes duplicates, incomplete code, and experimental projects - ✅ **Rich Metadata**: Enhanced Blueprint metadata with cross-domain classification - ✅ **Professional Grade**: 63.7-hour comprehensive analysis with open source tools ## Quick Start ### Dataset Structure ``` codereality-1t/ ├── data_csv/ # Evaluation subset data (CSV format, 2,387 repositories) │ ├── codereality_unified.csv # Main dataset file with unified schema │ └── metadata.json # Dataset metadata and column information ├── analysis/ # Analysis results and tools │ ├── dataset_index.json # File index and metadata │ └── metrics.json # Analysis results ├── docs/ # Documentation │ ├── DATASET_CARD.md # Comprehensive dataset card │ └── LICENSE.md # Licensing information ├── benchmarks/ # Benchmarking scripts and frameworks ├── results/ # Evaluation results and metrics ├── Notebook/ # Analysis notebooks and visualizations ├── eval_metadata.json # Evaluation metadata and statistics └── eval_subset_stats.json # Statistical analysis of the subset ``` ### Loading the Dataset ## 📊 **Unified CSV Format** **This dataset has been converted to CSV format with a unified schema** to ensure compatibility with Hugging Face's dataset viewer and eliminate schema inconsistencies that were present in the original JSONL format. ### **How to Use This Dataset** **Option 1: Standard Hugging Face Datasets (Recommended)** ```python from datasets import load_dataset # Load the complete dataset dataset = load_dataset("vinsblack/CodeReality") # Access the data print(f"Total samples: {len(dataset['train'])}") print(f"Columns: {dataset['train'].column_names}") # Sample record sample = dataset['train'][0] print(f"Repository: {sample['repo_name']}") print(f"Language: {sample['primary_language']}") print(f"Quality Score: {sample['quality_score']}") ``` **Option 2: Direct CSV Access** ```python import pandas as pd from huggingface_hub import snapshot_download # Download the dataset repo_path = snapshot_download(repo_id="vinsblack/CodeReality", repo_type="dataset") # Load CSV files import glob csv_files = glob.glob(f"{repo_path}/data_csv/*.csv") df = pd.concat([pd.read_csv(f) for f in csv_files], ignore_index=True) print(f"Total records: {len(df)}") print(f"Columns: {list(df.columns)}") ``` **Option 3: Metadata and Analysis** ```python # Load evaluation subset metadata with open('eval_metadata.json', 'r') as f: metadata = json.load(f) print(f"Subset: {metadata['eval_subset_info']['name']}") print(f"Files: {metadata['subset_statistics']['total_files']}") print(f"Repositories: {metadata['subset_statistics']['estimated_repositories']}") print(f"Size: {metadata['subset_statistics']['total_size_gb']} GB") # Access evaluation data files data_dir = "data/" # Local evaluation subset data for filename in os.listdir(data_dir)[:5]: # First 5 files file_path = os.path.join(data_dir, filename) with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: for line in f: repo_data = json.loads(line) print(f"Repository: {repo_data.get('name', 'Unknown')}") break # Just first repo from each file ``` ## Dataset Statistics ### Evaluation Subset Scale - **Total Repositories**: 2,049 (curated from 397,475) - **Total Files**: 323 JSONL archives - **Total Size**: 19GB uncompressed - **Languages Detected**: Multiple (JavaScript, Python, Java, C/C++, mixed) - **Selection**: Research value scoring with diversity sampling - **Source Dataset**: CodeReality complete dataset (3.05TB) ### Language Distribution (Top 10) | Language | Repositories | Percentage | |----------|-------------|------------| | Unknown | 389,941 | 98.1% | | Python | 4,738 | 1.2% | | Shell | 4,505 | 1.1% | | C | 3,969 | 1.0% | | C++ | 3,339 | 0.8% | | HTML | 2,487 | 0.6% | | JavaScript | 2,394 | 0.6% | | Go | 2,110 | 0.5% | | Java | 2,026 | 0.5% | | CSS | 1,655 | 0.4% | ### Duplicate Analysis **Exact Duplicates**: 0% exact SHA256 duplicates detected across file-level content **Semantic Duplicates**: ~18% estimated semantic duplicates and forks preserved by design **Research Value**: Duplicates intentionally maintained for real-world code distribution studies ### License Analysis **License Detection**: 0% detection rate (design decision for noisy dataset research) **Unknown Licenses**: 96.4% of repositories marked as "Unknown" by design **Research Purpose**: Preserved to test license detection systems and curation methods ### Security Analysis ⚠️ **Security Warning**: Dataset contains potential secrets - Password patterns: 1,231,942 occurrences - Token patterns: 353,266 occurrences - Secret patterns: 71,778 occurrences - API key patterns: 4,899 occurrences ## Research Applications ### Primary Use Cases 1. **Code LLM Robustness**: Testing model performance on noisy, real-world data 2. **Data Curation Research**: Developing automated filtering and cleaning methods 3. **License Detection**: Training and evaluating license classification systems 4. **Bug-Fix Studies**: Before/after commit analysis for automated debugging 5. **Cross-Language Analysis**: Multi-language repository understanding ### About This Evaluation Subset This repository contains the **19GB evaluation subset** designed for standardized benchmarks: - **323 files** containing **2,049 repositories** - Research value scoring with diversity sampling - Cross-language implementations and multi-repo analysis - Complete build system configurations - Enhanced metadata with commit history and issue tracking **Note**: The complete 3.05TB CodeReality dataset with all 397,475 repositories is available separately. Contact vincenzo.gallo77@hotmail.com for access to the full dataset. **Demonstration Benchmarks** available in `eval/benchmarks/`: - **License Detection**: Automated license classification evaluation - **Code Completion**: Pass@k metrics for code generation models - **Extensible Framework**: Easy to add new evaluation tasks ## Benchmarks & Results ### 📊 **Baseline Performance** Demonstration benchmark results available in `eval/results/`: - [`license_detection_sample_results.json`](eval/results/license_detection_sample_results.json) - 9.8% accuracy (challenging baseline) - [`code_completion_sample_results.json`](eval/results/code_completion_sample_results.json) - 14.2% Pass@1 (noisy data challenge) ### 🏃 **Quick Start Benchmarking** ```bash cd eval/benchmarks python3 license_detection_benchmark.py # License classification python3 code_completion_benchmark.py # Code generation Pass@k ``` **Note**: These are demonstration baselines, not production-ready models. Results show expected challenges of deliberately noisy data. ### 📊 **Benchmarks & Results** - **License Detection**: 9.8% accuracy baseline ([`license_detection_sample_results.json`](eval/results/license_detection_sample_results.json)) - **Code Completion**: 14.2% Pass@1, 34.6% Pass@5 ([`code_completion_sample_results.json`](eval/results/code_completion_sample_results.json)) - **Framework Scaffolds**: Bug detection and cross-language translation ready for community implementation - **Complete Analysis**: [`benchmark_summary.csv`](eval/results/benchmark_summary.csv) - All metrics for easy comparison and research use ## Usage Guidelines ### ✅ Recommended Uses - Academic research and education - Robustness testing of code models - Development of data curation methods - License detection research - Security pattern analysis ### ❌ Important Limitations - **No Commercial Use** without individual license verification - **Research Only**: Many repositories have unknown licensing - **Security Risk**: Contains potential secrets and vulnerabilities - **Deliberately Noisy**: Requires preprocessing for most applications ## ⚠️ Important: Dataset vs Evaluation Subset **This repository contains the 19GB evaluation subset only.** Some files within this repository (such as `docs/DATASET_CARD.md`, notebooks in `Notebook/`, and analysis results) reference or describe the complete 3.05TB CodeReality dataset. This is intentional for research context and documentation completeness. ### What's in this repository: - ✅ **Evaluation subset data**: 19GB, 2,049 repositories in `data/` directory - ✅ **Analysis tools and scripts**: For working with both subset and full dataset - ✅ **Documentation**: Describes both the subset and the complete dataset methodology - ✅ **Benchmarks**: Ready to use with the evaluation subset ### Complete Dataset Access (3.05TB): - 📧 **Contact**: vincenzo.gallo77@hotmail.com for access to the full dataset - 📊 **Full Scale**: 397,475 repositories across 21 programming languages - 🗂️ **Size**: 3.05TB uncompressed, 52,692 JSONL files #### Who Should Use the Complete Dataset: - 🎯 **Large-scale ML researchers** training foundation models on massive code corpora - 🏢 **Enterprise teams** developing production code understanding systems - 🔬 **Academic institutions** conducting comprehensive code analysis studies - 📊 **Data scientists** performing statistical analysis on repository distributions - 🛠️ **Tool developers** building large-scale code curation and filtering systems #### Advantages of Complete Dataset vs Evaluation Subset: | Feature | Evaluation Subset (19GB) | Complete Dataset (3.05TB) | |---------|-------------------------|---------------------------| | **Repositories** | 2,049 curated | 397,475 complete coverage | | **Use Case** | Benchmarking & evaluation | Large-scale training & research | | **Data Quality** | High (curated selection) | Mixed (deliberately noisy) | | **Languages** | Multi-language focused | 21+ languages comprehensive | | **Setup Time** | Immediate | Requires infrastructure planning | | **Best For** | Model evaluation, testing | Model training, comprehensive analysis | #### Choose Complete Dataset When: - ✅ Training large language models requiring massive code corpora - ✅ Developing data curation algorithms at scale - ✅ Studying real-world code distribution patterns - ✅ Building production-grade code understanding systems - ✅ Researching cross-language programming patterns - ✅ Creating comprehensive code quality metrics #### Choose Evaluation Subset When: - ✅ Benchmarking existing models - ✅ Quick prototyping and testing - ✅ Learning to work with noisy code datasets - ✅ Limited storage or computational resources - ✅ Focused evaluation on curated, high-value repositories ## Configuration Files (YAML) The project includes comprehensive YAML configuration files for easy programmatic access: | Configuration File | Description | |-------------------|-------------| | [`dataset-config.yaml`](dataset-config.yaml) | Main dataset metadata and structure | | [`analysis-config.yaml`](analysis-config.yaml) | Analysis methodology and results | | [`benchmarks-config.yaml`](benchmarks-config.yaml) | Benchmarking framework configuration | ### Using Configuration Files ```python import yaml # Load dataset configuration with open('dataset-config.yaml', 'r') as f: dataset_config = yaml.safe_load(f) print(f"Dataset: {dataset_config['dataset']['name']}") print(f"Version: {dataset_config['dataset']['version']}") print(f"Total repositories: {dataset_config['dataset']['metadata']['total_repositories']}") # Load analysis configuration with open('analysis-config.yaml', 'r') as f: analysis_config = yaml.safe_load(f) print(f"Analysis time: {analysis_config['analysis']['methodology']['total_time_hours']} hours") print(f"Coverage: {analysis_config['analysis']['methodology']['coverage_percentage']}%") # Load benchmarks configuration with open('benchmarks-config.yaml', 'r') as f: benchmarks_config = yaml.safe_load(f) for benchmark in benchmarks_config['benchmarks']['available_benchmarks']: print(f"Benchmark: {benchmark}") ``` ## Documentation | Document | Description | |----------|-------------| | [Dataset Card](docs/DATASET_CARD.md) | Comprehensive dataset documentation | | [License](docs/LICENSE.md) | Licensing terms and legal considerations | | [Data README](data/README.md) | Data access and usage instructions | ## Verification Verify dataset integrity: ```bash # Check evaluation subset counts python3 -c " import json with open('eval_metadata.json', 'r') as f: metadata = json.load(f) print(f'Files: {metadata[\"subset_statistics\"][\"total_files\"]}') print(f'Repositories: {metadata[\"subset_statistics\"][\"estimated_repositories\"]}') print(f'Size: {metadata[\"subset_statistics\"][\"total_size_gb\"]} GB') " # Expected output: # Files: 323 # Repositories: 2049 # Size: 19.0 GB ``` ## Citation ```bibtex @misc{codereality2025, title={CodeReality Evaluation Subset: A Curated Research Dataset for Robust Code Understanding}, author={Vincenzo Gallo}, year={2025}, note={Version 1.0.0 - Evaluation Subset (19GB from 3.05TB source)} } ``` ## Community Contributions We welcome community contributions to improve CodeReality-1T: ### 🛠️ **Data Curation Scripts** - Contribute filtering and cleaning scripts for the noisy dataset - Share deduplication algorithms and quality improvement tools - Submit license detection and classification improvements ### 📊 **New Benchmarks** - Add evaluation tasks beyond license detection and code completion - Contribute cross-language analysis benchmarks - Share bug detection and security analysis evaluations ### 📈 **Future Versions** - **v1.1.0**: Enhanced evaluation subset with community feedback - **v1.2.0**: Improved license detection and filtering tools - **v2.0.0**: Community-curated clean variant with quality filters ### 🤝 **How to Contribute** **Community contributions are actively welcomed and encouraged!** Help improve the largest deliberately noisy code dataset. **🎯 Priority Contribution Areas**: - **Data Curation**: Cleaning scripts, deduplication algorithms, quality filters - **Benchmarks**: New evaluation tasks, improved baselines, framework implementations - **Analysis Tools**: Visualization, statistics, metadata enhancement - **Documentation**: Usage examples, tutorials, case studies **📋 Contribution Process**: 1. Clone the repository locally 2. Review existing analysis in the `analysis/` directory 3. Develop improvements or new features 4. Test your contributions thoroughly 5. Submit your improvements via standard collaboration methods **💡 Join the Community**: Share your research, tools, and insights using CodeReality! ## Support & Access ### Evaluation Subset (This Repository) - **Documentation**: See `docs/` directory for comprehensive information - **Analysis**: Check `analysis/` directory for current research insights - **Usage**: All benchmarks and tools work directly with the 19GB subset ### Complete Dataset Access (3.05TB) - **🔗 Full Dataset Request**: Contact vincenzo.gallo77@hotmail.com - **📋 Include in your request**: - Research purpose and intended use - Institutional affiliation (if applicable) - Technical requirements and storage capacity - **⚡ Response time**: Typically within 24-48 hours ### General Support - **Technical Questions**: vincenzo.gallo77@hotmail.com - **Documentation Issues**: Check `docs/` directory first - **Benchmark Problems**: Review `benchmarks/` and `results/` directories --- *Dataset created using transparent research methodology with complete reproducibility. Analysis completed in 63.7 hours with 100% coverage and no sampling.*