File size: 5,733 Bytes
a36462f 877914e a36462f 877914e a36462f 03be174 b8957c0 7d46c28 9b077d5 b8957c0 172cfa5 7bbd0b0 377ceff 3f3ab3a b1048a3 b8957c0 6a5cd3b b8957c0 ff75ab0 b8957c0 c0d9269 b8957c0 7d46c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: mit
language:
- en
tags:
- video
- video understanding
- game
- gameplay understanding
- multi-agent
- esport
- counter-strike
- opponent-modeling
- ego-centric
- cross ego-centric
task_categories:
- video-classification
- video-text-to-text
- visual-question-answering
- text-to-video
pretty_name: X-EGO
---
# Dataset Card for X-Ego-CS
Links:
- [Paper](https://arxiv.org/abs/2510.19150)
- [Github Codebase](https://github.com/HATS-ICT/x-ego)
- Homepage (comming soon)
## Cross-Ego Demo (Pistol Round)
<video controls>
<source src="https://huggingface.co/datasets/wangyz1999/X-EGO-CS/resolve/main/multi-ego-sync-demo-pistol.mp4" type="video/mp4">
</video>
**Note:** This demo concats videos in a grid. The original datasets videos are from individual player POV recording.
## Dataset Summary
**X-Ego-CS** is a multi-agent gameplay video dataset for **cross-egocentric multi-agent video understanding** in Counter-Strike:2. It contains **124 hours** of synchronized first-person gameplay footage captured from **45 professional-level Counter-Strike 2 matches**. Each match includes **multi-player egocentric video streams** (POVs from all players) and corresponding **state-action trajectories**, enabling the study of **team-level tactical reasoning** and **situational awareness** from individual perspectives.
The dataset was introduced in the paper:
> **X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning**
> *Yunzhe Wang, Soham Hans, Volkan Ustun*
> University of Southern California, Institute for Creative Technologies (2025)
> [arXiv:2510.19150](https://arxiv.org/abs/2510.19150)
X-Ego-CS supports research on **multi-agent representation learning**, **egocentric video modeling**, **team tactic analysis**, and **AI-human collaboration** in complex 3D environments.
---
## How to Download
To download the full dataset using the Hugging Face CLI:
```bash
# Install the Hugging Face Hub client
pip install --upgrade huggingface_hub
# (Optional) Log in if the dataset is private
huggingface-cli login
# Download the dataset repository
huggingface-cli download wangyz1999/X-EGO-CS \
--repo-type dataset \
--local-dir ./X-EGO-CS \
--resume-download \
--max-workers 8
```
## Dataset Structure
### Data Fields
**Segment Info**
- `idx` β Row index (unique for each segment)
- `partition` β Dataset split label (e.g., train/test/val)
- `seg_duration_sec` β Duration of the segment in seconds
- `start_tick`, `end_tick`, `prediction_tick` β Game tick indices for start, end, and prediction points
- `start_seconds`, `end_seconds`, `prediction_seconds` β Corresponding timestamps in seconds
- `normalized_start_seconds`, `normalized_end_seconds`, `normalized_prediction_seconds` β Time values normalized to a [0β1] scale for model input
**Match Metadata**
- `match_id` β Unique identifier of the match
- `round_num` β Match round number
- `map_name` β Name of the game map (e.g., *de_mirage*)
**Player States** (for `player_0` β `player_9`)
- `player_{i}_id` β Unique identifier (e.g., Steam ID)
- `player_{i}_name` β In-game player name
- `player_{i}_side` β Team side (`t` for Terrorist, `ct` for Counter-Terrorist)
- `player_{i}_X`, `player_{i}_Y`, `player_{i}_Z` β Playerβs position coordinates (normalized or map-based)
- `player_{i}_place` β Named location or area on the map (e.g., *CTSpawn*, *SideAlley*)
## File Structure
```
data/
βββ demos/ # Raw .dem files (by match)
β βββ <match_id>.dem
βββ labels/ # Global label datasets
β βββ enemy_location_nowcast_s1s_l5s.csv
β βββ teammate_location_nowcast_s1s_l5s.csv
βββ metadata/ # Match / round metadata
β βββ matches/
β β βββ <match_id>.json
β βββ rounds/
β βββ <match_id>/
β βββ round_<nn>.json
βββ trajectories/ # Player movement trajectories
β βββ <match_id>/
β βββ <player_id>/
β βββ round_<nn>.csv
β βββ ...
βββ videos/ # Player POV recordings
βββ <match_id>/
βββ <player_id>/
βββ round_<nn>.mp4
βββ ...
```
---
## Dataset Creation
### Curation Rationale
The dataset was designed to study **cross-perspective alignment** in team-based tactical games where each playerβs view provides only a partial observation of the environment.
Synchronizing multiple first-person streams allows for modeling **shared situational awareness** and **implicit coordination**βkey ingredients in human team intelligence.
### Source Data
- **Game:** Counter-Strike 2 (Valve Corporation) in-game demo replay recording. Downloaded from top elo-leaderboard from [Faceit.com](https://www.faceit.com/)
- **Recording setup:** Screen capture of first-person gameplay, synchronized across all agents using timestamp alignment
- **Annotations:** Automatically generated state-action trajectories derived from server replay data
---
## Dataset Statistics
- **Total hours:** 124
- **Total matches:** 45
- **Agents per match:** 10 (5 per team)
- **Frame rate:** 30 fps
- **Video resolution:** 1080x720
---
## Citation
If you use this dataset, please cite the following paper:
```bibtex
@article{wang2025x,
title={X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning},
author={Wang, Yunzhe and Hans, Soham and Ustun, Volkan},
journal={arXiv preprint arXiv:2510.19150},
year={2025}
} |