1605.08675v1 [cs.CL] 27 May 2016

arXiv

Boosting Question Answering by Deep Entity Recognition

Piotr Przybyta™

Institute of Computer Science, Polish Academy of Sciences,
Warsaw, Poland,
P.Przybyla@phd.ipipan.waw.pl

Abstract. In this paper an open-domain factoid question answering system for Polish,
RAFAEL, is presented. The system goes beyond finding an answering sentence; it also ex-
tracts a single string, corresponding to the required entity. Herein the focus is placed on
different approaches to entity recognition, essential for retrieving information matching ques-
tion constraints. Apart from traditional approach, including named entity recognition (NER)
solutions, a novel technique, called Deep Entity Recognition (DeepER), is introduced and
implemented. It allows a comprehensive search of all forms of entity references matching a
given WordNet synset (e.g. an impressionist), based on a previously assembled entity library.
It has been created by analysing the first sentences of encyclopaedia entries and disambigua-
tion and redirect pages. DeepER also provides automatic evaluation, which makes possible
numerous experiments, including over a thousand questions from a quiz TV show answered
on the grounds of Polish Wikipedia. The final results of a manual evaluation on a separate
question set show that the strength of DeepER approach lies in its ability to answer questions
that demand answers beyond the traditional categories of named entities.

1 Introduction

A Question Answering (QA) system is a computer program capable of understanding questions in
a natural language, finding answers to them in a knowledge base and providing answers in the same
language. So broadly defined task seems very hard; [Shapiro| (1992) describes it as AI-Complete,
i.e. equivalent to building a general artificial intelligence. Nonetheless, the field has attracted a lot
of attention in Natural Language Processing (NLP) community as it provides a way to employ
numerous NLP tools in an exploitable end-user system. It has resulted in valuable contributions
within TREC competitions (Dang et al,|2007)) and, quite recently, in a system called IBM Watson
(Ferrucci et all 2010), successfully competing with humans in the task.

However, the problem remains far from solved. Firstly, solutions designed for English are not
always easily transferable to other languages with more complex syntax rules and less resources
available, such as Slavonic. Secondly, vast complexity and formidable hardware requirements of
IBM Watson suggest that there is still a room for improvements, making QA systems smaller and
smarter.

This work attempts to contribute in both of the above areas. It introduces RAFAEL (RApid
Factoid Answer Extraction aLgorithm), a complete QA system for Polish language. It is the first
QA system designed to use an open-domain plain-text knowledge base in Polish to address factoid
questions not only by providing the most relevant sentence, but also an entity, representing the
answer itself. The Polish language, as other Slavonic, features complex inflection and relatively free
word order, which poses additional challenges in QA. Chapter [2| contains a detailed description of
the system architecture and its constituents.

In the majority of such systems, designers’ attention focus on different aspects of a sentence
selection procedure. Herein, a different idea is incorporated, concentrating on an entity picking
procedure. It allows to compare fewer sentences, likely to contain an answer. To do that, classical
Named Entity Recognition (NER) gets replaced by Deep Entity Recognition. DeepER, introduced
in this work, is a generalisation of NER which, instead of assigning each entity to one of several
predefined NE categories, assigns it to a WordNet synset.

For example, let us consider a question: Which exiled European monarch returned to his country
as a prime minister of a republic?. In the classical approach, we recognise the question as concerning

** The study was supported by research fellowship within "Information technologies: research and their
interdisciplinary applications" agreement number POKL. 04.01.01-00-051/10-00.

a person and treat all persons found in texts as potential answers. Using DeepER, it is possible to
limit the search to persons being monarchs, which results in more accurate answers. In particular,
we could utilise information that Simeon II (our answer) is a tsar; thanks to WordNet relations
we know that it implies being a monarch. DeepER is a generalisation of NER also from another
point of view — it goes beyond the classical named entity categories and treats all entities equally.
For example, we could answer a question Which bird migrates from the Arctic to the Antarctic and
back every year?, although arctic tern is not recognized as NE by NER systems. Using DeepER,
we may mark it as a seabird (hence a bird) and include among possible answers. Chapter outlines
this approach.

The entity recognition process requires an entities library, containing known entities, their text
representations (different ways of textual notation) and WordNet synsets, to which they belong.
To obtain this information, the program analyses definitions of entries found in encyclopaedia (in
this case the Polish Wikipedia). In previous example, it would use a Wikipedia definition: The
Arctic Tern (Sterna paradisaea) is a seabird of the tern family Sternidae. This process, involving
also redirect and disambiguation pages, is described in section Next, having all the entities
and their names, it suffices to locate their mentions in a text. The task (section is far from
trivial because of a complicated named entity inflection in Polish (typical for Slavonic languages,
see (Przepidrkowskil [2007)).

DeepER framework provides also another useful service, i.e. automatic evaluation. Usually
QA systems are evaluated by verifying accordance between obtained and actual answer based on a
human judgement. Plain string-to-string equality is not enough, as many entities have different text
representations, e.g. John F. Kennedy is as good as John Fitzgerald Kennedy and John Kennedy,
or JFK (again, the nominal inflection in Polish complicates the problem even more). However,
with DeepER, a candidate answer can undergo the same recognition process and be compared to
the actual expected entity, not string.

Thanks to automatic evaluation vast experiments requiring numerous evaluations may be per-
formed swiftly; saving massive amount of time and human resources. As a test set, authentic
questions from a popular Polish quiz TV showE| are used. Results of experiments, testing (among
others) the optimal context length, a number of retrieved documents, a type of entity recognition
solution, appear in section

To avoid overfitting, the final system evaluation is executed on a separate test set, previously
unused in development, and is checked manually. The results are shown in section[5.2]and discussed
in chapter [6] Finally, chapter [7] concludes the paper.

2 RAFAEL

As stated in previous chapter, RAFAEL is a computer system solving a task of Polish text-based,
open-domain, factoid question answering. It means that provided questions, knowledge base and
returned answers are expressed in Polish and may belong to any domain. The system analyses
the knowledge base, consisting of a set of plain text documents, and returns answers (as con-
cise as possible, e.g. a person name), supplied with information about supporting sentences and
documents.

What are the kinds of requests that fall into the category of factoid questions? For the purpose
of this study, it is understood to include the following types:

— Verification questions, which could be answered by providing a single boolean value (true or
false), e.g. Did Lee Oswald kill John F. Kennedy?,

— Option questions, requiring to select one of available options, e.g. Which one killed John F.
Kennedy: Lance Oswald or Lee Oswald?,

— Named entity questions, expected to be answered by a single named entity, e.g. When was
John F. Kennedy killed?,

— Unnamed entity questions, similar to above, but the expected entity does not belong to
traditional named entity types, e.g. What did Lee Oswald use to kill John F. Kennedy?,

— Other name questions, asking for another name of a given named entity, e.g. What nickname
did John F. Kennedy use during his military service?,

L Jeden z dziesieciu

— Multiple named entities questions, to be answered by a list of named entities, e.g. Which
U.S. presidents were assassinated in office?.

Although the above list rules out many challenging types of questions, demanding more elaborate
answers (e.g. Why was JFK killed?, What is a global warming?, How to build a fence?), it still
involves very distinct problems. Although RAFAEL can recognize factoid questions from any of
these types and find documents relevant to them (see more in section and (Przybytal [2013b)),
its answering capabilities are limited to those requesting single unnamed entities and named
entities. In this document, they are called entity questions.

The task description here is similar to the TREC competitions and, completed with test data
described in section .1} could play a similar role for Polish QA i.e. provide a possibility to compare
different solutions of the same problem. More information about the task, including its motivation,
difficulties and a feasibility study for Polish could be found in (Przybyta, [2012).

2.1 Related work

The problem of Question Answering is not new to the Polish NLP community (nor working on
other morphologically rich languages), but none of studies presented so far coincides with the
notion of plain text-based QA presented above.

First Polish QA attempts date back to 1985, when |Vetulani| (1988]|) presented a Polish interface
to ORBIS database, containing information about the solar system. The database consisted of a
set of PROLOG rules and the role of the system (called POLINT) was to translate Polish questions
to appropriate queries. Another early solution, presented by [Duclaye et al.| (2002), could only work
in a restricted domain (business information).

A system dealing with a subset of the TREC tasks was created for Bulgarian by [Tanev| (2004).
His solution answers only three types of questions: Definition, Where-Is and Temporal. He was
able to achieve good results with 100 translated TREC questions, using several manually created
answer patterns, without NER or any semantic information. Another system for Bulgarian (Simov
& Osenovay, 2005)) participated in the CLEF 2005 competition. Its answer extraction module bases
on partial grammars, playing a role of patterns for different types of questions. They could answer
correctly 37 of 200 questions, of which only 16 belong to the factoid type. Previously the same
team (Osenova et al., 2004) took part in a Bulgarian-English track of the CLEF 2004, in which
Bulgarian questions were answered using English texts.

A QA solution was also created for Slovene (Ceh & Ojstersek, 2009). The task there is to answer
students’ questions using databases, spreadsheet files and a web service. Therefore, it differs from
the problem discussed above by limited domain (issues related to a particular faculty) and the
non-textual knowledge base. Unfortunately, no quantitative results are provided in this work.

More recently, several elements of a Polish QA system called Hipisek were presented by |Walas &
Jassem (2010). It bases on a fairly common scheme of transforming a question into a search query
and finding the most appropriate sentence, satisfying question constrains. Unfortunately, a very
small evaluation set (65 question) and an unspecified knowledge base (gathered by a web crawler)
make it difficult to compare the results. In their later works (Walas, 2012} Walas & Jassem, [2011)),
the team concentrated on spatial reasoning using a knowledge base encoded as a set of predicates.

The approach presented by [Piechocinski & Mykowiecka (2005) is the closest to the scope of
this work, as it includes analysis of Polish Wikipedia content and evaluation is based on questions
translated from a TREC competition. Unfortunately, it heavily relies on a structure of Wikipedia
entries, making it impossible to use with an arbitrary textual corpus.

A non-standard approach to answer patterns has been proposed by [Konopik & Rohlik| (2010]).
In their Czech open-domain QA system they used a set of templates associated with question types,
but also presented a method to learn them semi-automatically from search results. [Peshterliev &
Koychev| (2011) in their Bulgarian QA system concentrated on semantic matching between between
a question and a possible answer checked using dependency parsing. However, they provide no data
regarding an answering precision of the whole system.

The last Polish system worth mentioning has been created by Marcinczuk et al.|(2013). Gen-
erally, their task, called Open Domain Question Answering (ODQA), resembles what is treated
here, but with one major difference. A document is considered an answer; therefore they focus on

improving ranking in a document retrieval stage. They have found out that it could benefit from
taking nearness of query terms occurrences into account.

As some of Slavonic languages lack necessary linguistic tools and resources, only partial solutions
of QA problems exist for them, e.g. document retrieval for Macedonian (Armenska et al. |2010]),

question classification for Croatian (Lombarovi¢ et al.| 2011) or answer validation for Russian
(Solovyev, [2013]).

2.2 System Architecture

A general architectural scheme of RAFAEL (figure [1]) has been inspired by similar systems devel-
oped for English; for examples see works by |[Hovy et al| (2000) and [Moldovan et al.| (2000).

(' INDEXING

QUESTION

QUESTION

ANALYSIS

QUESTION MODEL /
[ANNOTATED
RELEVANT TEXT
QUESTION QUESTION SEARCH DOCUMENTS BASE
CONTENT TYPE QUERY

\

N

ANNOTATED
DOCUMENT

ENTITY RECOGNITION

ENTITY
MENTIONS

7 N
J/\

ENTITY
MENTION

~—

DISTANCE MEASURE

FOR EVERY
DOCUMENT

CONTEXT GENERATION

FOR EVERY MENTION

MENTION BEST ENTITY SELECTION ANSWER
RANKING

Fig. 1. Overall architecture of the QA system — RAFAEL. See descriptions of elements in text.

Two of the steps in the diagram concern offline processing of a knowledge base. Firstly, it is
indexed by a search engine to ensure efficient searching in further stages (INDEXING). Secondly,
it may be annotated using a set of tools (NLP), but this could also happen at an answering stage
for selected documents only.

After the system receives a question, it gets analysed (QUESTION ANALYSIS) and trans-
formed into a data structure, called question model. One of its constituents, a search query, is used
to find a set of documents, which are probably appropriate for the current problem (SEARCH).
For each of the documents, all entity mentions compatible with an obtained question type (e.g.
monarchs), are extracted (ENTITY RECOGNITION). For each of them, a context is generated
(CONTEXT GENERATION). Finally, a distance between a question content and the entity con-
text is computed to asses its relevance (DISTANCE MEASURE). All the mentions and their
distance scores are stored and, after no more documents are left, used to select the best match
(BEST ENTITY SELECTION). The system returns the entity, supplied with information about
a supporting sentence and a document, as an answer.

2.3 Knowledge Base Processing

Knowledge base (KB) processing consists of two elements: indexing and annotating. The objective
of the first is to create an index for efficient searching using a search engine. In the system, Lucene
3.6%is used to build two separate full-text indices: regular and stemmed using a built-in stemmer
for Polish, Stempel (Galambos, [2001)).

Secondly, texts go through a cascade of annotation tools, enriching it with the following infor-
mation:

— Morphosyntactic interpretations (sets of tags), using Morfeusz 0.82 (Wolinski, [2006)),

— Tagging (selection of the most probable interpretation), using a transformation-based learning
tagger, PANTERA 0.9.1 (Acedanski, [2010)),

— Syntactic groups (possibly nested) with syntactic and semantic heads, using a rule-based shal-
low parser Spejd 1.3.7 (Przepiorkowski, |2008) with a Polish grammar, including improved ver-
sion of modifications by Degorski| (2012), enabling lemmatisation of nominal syntactic groups,

— Named entities, using two available tools: NERF 0.1 (Savary & Waszczuk|, [2012)) and Liner2
2.3 (Marcinczuk & Janicki, 2012).

All the annotations are stored in a variant of TEI P5 standard, designed for the National Corpus
of Polish (Przepiorkowski et al., 2012). As noted previously, the process of annotating is not
indispensable at the stage of offline KB processing; it could be as well executed only on documents
returned from the search engine (for example see Webclopedia by Hovy et al.| (2000) or LASSO
by Moldovan et al.| (2000)). However, since during evaluation experiments the same documents
undergo the process hundreds of times, it seems reasonable to process the whole KB only once.

2.4 Question Analysis

The goal of question analysis is to examine a question and extract all the information that suf-
fices for answer finding. A resulting data structure, called question model, contains the following
elements:

1. Question type — a description of expected answer type, instructing the system, what type of
data could be returned as an answer. It has three levels of specificity:

(a) General question type — one of the types of factoid questions, enumerated at the beginning
of this chapter,

(b) Named entity type — applicable only in case general type equals named entity. Possible
values are the following: place, continent, river, lake, mountain, mountain range, island,
archipelago, sea, celestial body, country, state, city, nationality, person, first name, last
name, band, dynasty, organisation, company, event, date, century, year, period, number,
quantity, vehicle, animal, title.

2 Available from http://lucene.apache.org/.

http://lucene.apache.org/

(¢) Focus synset— applicable in case of entity questions; a WordNet synset, to which a question
focus belongs; necessary for DeepER.
2. Search query — used to find possibly relevant documents,
3. Question content — the words from question which are supposed to appear also in context of
an answer.

The task presented above, called question classification, is an example of text classification
with very short texts. It could be tackled by a general-purpose classifier; for example, |Ceh &
Ojstersek| (2009) used SVMs (Support Vector Machines) for closed-domain Slovene QA system;
Li & Roth| (2002) employed SNoW (Sparse Network of Winnows) for hierarchical classification of
TREC questions. For Polish results are not satisfactory (Przybyta) [2013b) because of data sparsity.

However, sometimes a solution seems quite evident, as part of the question types enforce its
structure. For example, when it begins with Who or When, it belongs to person and date question
types, respectively. That is why a set of 176 regular expressions (in case of RAFAEL) suffices to
deal with them. They match only a subset of questions (36.15 per cent of the training set), but
are highly unambiguous (precision of classification equals 95.37 per cent). Nevertheless, some (Lee
et al., |2005) use solely such patterns, but need a great number of them (1,273).

Which russian submarine sank in 2000 with its whole crew?
|Ktdra [rosyjska t6dz podwodnalzatoneta w 2000 roku wraz z caty zatoga?

Interrogative Question
pronoun focus

first nominal group

(rosyjska (t6dZ podwodna)) ------- WordNet search . e No synset

semantic head

WordNet search

(t6dZ podwodna) -------------- Tt EEIER R - {t6dz podwodna 1}
Question type hypernym
General type: | NAMED_ENTITY ‘ M
Named entity type: I VEHICLE }~ hypernym
Focus synset: I{’rc’)dz' podwodna 1}}- Y
{$rodek lokomocji 1, srodek transportu 1}
vehicle

Fig. 2. Outline of a question focus analysis procedure used to determine an entity type in case of ambiguous
interrogative pronouns.

Unfortunately, most of entity questions are ambiguous, i.e. it is not enough to inspect an
interrogative pronoun to find an answer type. They may begin with what or which, followed by
a question focus. For example, let us consider a question Which russian submarine sank in 2000
with its whole crew?. Tts focus (russian submarine) carries information that the question could
be answered by a named entity of type wvehicle. The whole process of focus analysis is shown in
figure |2| The first nominal group after a pronourﬁ serves as a possible lexeme name in p/WordNet
2.1 (Maziarz et al., [2012). As long as there are no results, it gets replaced by its semantic head.
When a matching lexeme exists in WordNet, a set of all its hypernyms is extracted. If any of the
elements in the set correspond to one of the named entity types, this type is recorded in the question
model. Otherwise the general question type takes the value unnamed entity. A WordNet-assisted
focus analysis was also implemented in one of solutions participating in a TREC competition
(Harabagiu et al., 2001)).

3 RAFAEL includes a manually created list of opening constructions to be ignored if appearing right after
a pronoun, such as typ (type of) or sposrdd (out of).

Search query generation is described in the next chapter. The last element of a question model,
called question content, contains segments, which are to be compared with texts to find the best
answer. It includes all the words of the interrogative sentence except those included in the matched
pattern (Which, ¢) and the focus (submarine). In our example the following are left: russian, sank,
in, 2000, with, its, whole, crew. An entity mention, which context resembles this set, will be selected
as an answer (see details in section [2.7)).

The question analysis stage explained above follows a design presented in previous works (Przy-
bytay, |2013blla)), where more details could be found. The major difference lies in result processing —
an original synset is not only projected to one of the named entity types, but also recorded as a
focus synset in question type, utilised in DeepER to match entity types. In our example, it would
only consider submarines as candidate answers.

2.5 Document Retrieval

The use of search engines in QA systems is motivated mainly by performance reasons. Theoretically,
we could analyse every document in a text base and find the most relevant to our query. However,
it would take excessive amount of time to process the documents, majority of which belong to
irrelevant domains (839,269 articles in the test set). A search engine is used to speed up the
process by selecting a set of documents and limiting any further analysis to them.

As described in section 23] a knowledge base is indexed by Lucene offline. Given a question,
we need to create a search query. The problem is that an answer in the knowledge base is probably
expressed differently than the question. Hence, a query created directly from words of the question
would not yield results, unless using a highly-redundant KB, such as the WWW (for this type of
solution see (Brill et al., 2002)). Therefore, some of the query terms should be dropped — based on
their low IDF (Katz et al. [2003) or more complex heuristics (Moldovan et al., [2000). On the other
hand, the query may be expanded with synonyms (Hovy et al., |2000) or derived morphological
forms (Katz et al., [2003).

Finally, we need to address term matching issue — how to compare a query keyword and a
text word in a morphologically-rich language, such as Polish? Apart from exact match, it also is
possible to use a stemmer or fuzzy queries, available in Lucene (accepting a predefined Levenshtein
distance between matching strings).

Previous experiments (Przybytal 2013a)) led to the following query generation procedure:

1. Remove all words matched by a regular expression at the classification stage (What, Which,
etc.),

2. Keep a question focus,

. Connect all the remaining words by OR operator,

4. Use fuzzy term matching strategy with absolute distance equal 3 characters and fixed prefix.

w

Lucene handles a query and yields a ranked document list, of which N first get transferred to
further analysis. The influence of value of N on answering performance is evaluated in section [5.1}

2.6 Entity Recognition

Having a set of proposed documents and a question type, the next step is to scan them and find
all mentions of entities with appropriate types. RAFAEL includes two approaches to the problem:
classical Named Entity Recognition (NER) and novel Deep Entity Recognition.

Three NERs for Polish are employed: NERF, Liner2 and Quant. NERF (Savary & Waszczukl,
2012) is a tool designed within the project of the National Corpus of Polish and bases on linear-
chain conditional random fields (CRF). It recognizes 13 types of NEs, possibly nested (e.g. Warsaw
in University of Warsaw). Liner2 (Marcinczuk & Janicki, [2012) also employs CRFs, but differen-
tiates NEs of 56 types (which could be reduced to 5 for higher precision). Annotation using both
of the tools happens offline within the KB preprocessing, so in the currently described stage it suf-
fices to browse the annotations and find matching entities. As the above tools lack recognition of
quantitative expressions, a new one has been developed especially for RAFAEL and called Quant.
It is able to handle both numbers and quantities (using WordNet) in a variety of notations.

Appendix A contains details of implementation of named entity recognition in RAFAEL, in-
cluding a description of Quant and a mapping between question types and named entity types

available in NERF and Liner2. An alternative being in focus of this work, i.e. DeepER approach,
is thorougly discussed in chapter

RAFAEL may use any of the two approaches to entity recognition: NER (via NERF, Liner2
and Quant) or novel DeepER; this choice affects its overall performance. Experiments showing
precision and recall of the whole system with respect to applied entity recognition technique are
demonstrated in section B.11

2.7 Mention selection

When a list of entity mentions in a given document is available, we need to decide which of them
most likely answers the question. The obvious way to do that is to compare surroundings of every
mention with the content of the question. The procedure consists of two steps: context generation
and similarity measurement.

Context generation The aim of a context generation step is to create a set of segments sur-
rounding an entity, to which they are assigned. Without capabilities of full text understanding,
two approximate approaches seem legitimate:

— Sentence-based — for a given entity mention, a sentence in which it appears, serves as a context,
— Segment-based — for a given entity mention, every segment sequence of length M, containing
the entity, is a context.

Both of them have some advantages: relying on a single sentence ensures relation between an entity
and a context, whereas the latter provides possibility of modifying context length. Obviously, the
value of M should be proportional to question (precisely, its content) length.

The method of treating sentences as a context has gained most popularity (see work of [Yih
et al| (2013)), but a window of fixed size also appears in the literature; for example [Katz et al.
(2003) used one with M=140 bytes.

The context generation is also related to another issue, i.e. anaphoric expressions. Some seg-
ments (e.g. this, him, they) may refer to entities that occurred earlier in a text and therefore harm a
similarity estimation. It could be tackled by applying anaphora resolution, but a solution for Polish
(Kopeé & Ogrodniczuk, [2012)) remains in an early stage. Observations show that the majority of
anaphora refer to an entity in a document title, so the problem is partially bypassed by adding a
title to a context.

An influence of the context generation techniques on final results is shown in section [5.1]

Similarity measurement To measure a similarity between a question content (explained in
section and an entity context (generated by the procedures in previous section), a Jaccard
similarity index (Jaccard, [1901) is computed. However, not all word co-occurrences matter equally
(e.g. compare this and Honolulu), so word weights are used:

EieAmB Wi

Sim,, (4, B) =
icAuB Wi

The sets A and B contain segments in base forms, whereas w; denotes a weight of an i-th base
form, equal to its scaled IDF computed on a document set D:

log T
L [{d:i€d}|
b |D|
mlax log Td:iedy]
The Jaccard index is a popular solution for sentence similarity measurement in QA (for example
see a system by [Ahn et al.| (2004)). In case of selecting relevant documents, cosine measure is also
applied. Marciniczuk et al.| (2013) compared it to Minimal Span Weighting (MSW) and observed
that the latter performs better, as it takes into account a distance between matched words. A study
of different techniques for sentence similarity assessment could be found in (Yih et al., 2013).

Answer generation At this stage, a large set of pairs of entity mention and its contexts with
scores assigned, is available. Which of them answers the question? Choosing the one with the
highest score seems an obvious solution, but we could also aggregate scores of different mentions
corresponding to the same answer (entity), e.g. compute their sum or mean. However, such ex-
periments did not yield improvement, so RAFAEL returns only a single answer with the highest
score.

An answer consists of the following elements: an answer string, a supporting sentence, a sup-
porting document and a confidence value (the score). A sentence and a document, in which the
best mention appeared, are assumed to support the answer. Thanks to properties of Jaccard sim-
ilarity, the mention score ranges between 0 for completely unrelated sentences to 1 for practically
(ignoring inflection and a word order) the same. Therefore, it may serve as an answer confidence.

When no entity mentions satisfying constraints of a question are found, no answer is returned.
This type of result could also be used when the best confidence score is below a predefined value;
performance of such technique are shown in section The refusal to answer in case of insufficient
confidence plays an important role in Jeopardy!, hence in IBM Watson (Ferrucci et al., [2010)), but
it was also used to improve precision in other QA systems (Oh et al., [2013).

3 Deep Entity Recognition

Deep Entity Recognition procedure is an alternative to applying Named Entity Recognition in
QA to find entities matching question constraints. It scans a text and finds words and multi-word
expressions, corresponding to entities. However, it does not assign them to one of several NE
categories; instead, WordNet synsets are used. Therefore, named entities are differentiated more
precisely (e.g. monarchs and athletes) and entities beyond the classical NE categories (e.g. species,
events, devices) could also be recognised in a text.

It does not seem possible to perform this task relying solely on features extracted from words
and surrounding text (as in NER), so it is essential to build an entity library. Such libraries already
exist (Freebase, BabelNet, DBpedia or YAGO) and could provide an alternative for DeepER, but
they concentrate on English. The task of adaptation of such a base to another language is far
from trivial, especially for Slavonic languages with complex NE inflection (Przepiorkowskil, [2007]).
An ontology taking into account Polish inflection (Prolexbase) has been created by |Savary et al.
(2013)), but it contains only 40,000 names, grouped into 34 types.

3.1 Related work

The idea of DeepER in a nutshell is to improve QA by annotating a text with WordNet synsets
using an entity base created by understanding definitions found in encyclopaedia. Parts of this
concept have already appeared in the NLP community.

A technique of coordinating synsets assigned to a question and a possible answer emerged in
a study by Mann| (2002). While a question analysis there seems very similar to this work, entity
library (called proper noun ontology) generation differs a lot. The author analysed 1 GB of newswire
text and extracted certain expressions, e.g. "X, such as Y" implies that Y is an instance of X.
Albeit precision of resulting base was not very good (47 per cent for non-people proper names), it
led to a substantial improvement of QA performance.

The idea of analysing encyclopaedic definitions to obtain this type of information already ap-
peared, but was employed for different applications. For example, [Toral & Munoz (2006) described
a method of building a gazetteer by analysing hyperonymy branches of nouns of first sentences
in Wikipedia definitions. Unlike in this work, an original synset was replaced by a coarse-grained
NER category. Another example of application is a NE recognizer (Kazama & Torisawal, [2007)) us-
ing words from a definition as additional features for a standard CRF classifier. In their definition
analysis only the last word of the first nominal group was used.

Other researchers dealt with a task explicitly defined as classifying Wikipedia entries to NER
categories. For example |[Dakka & Cucerzan| (2008]) addressed the problem by combining traditional
text classification techniques (bag of words) with contexts of entity mentions. Others (Ponzetto
& Strube, [2007)) thoroughly examined article categories as a potential source of is-a relations in a
taxonomy (99 per cent of entries have at least one category). Inhomogeneity of categories turned

out as the main problem, dealt with by a heuristic classifier, assigning is-a and not-is-a labels.
Categories were also used as features in a NER task (Richman & Schonel |2008), but it required a
set of manually designed patterns to differentiate between categories of different nature.

Exploring a correspondence between Wikipedia entries and WordNet synsets found an applica-
tion in automatic enriching ontologies with encyclopaedic descriptions (Ruiz-Casado et al.| [2005).
However, only NEs already appearing in the WordNet were considered. The task (solved by bag-
of-words similarity) is non-trivial only in case of polysemous words, e.g. which of the meanings of
Jupiter corresponds to which Wikipedia article? Others (Toral et al., |2008) concentrated on the
opposite, i.e. extending the WordNet by NEs that are not there yet by adding titles of entries as
instances of synsets corresponding to their common category.

Also, some see Wikipedia as an excellent source of high-quality NER training data. Again,
it requires to project entries to NE categories. A thorough study of this problem, presented by
Balasuriya et al.| (2009), utilizes features extracted from article content (bag of words), categories,
keywords, inter-article and inter-language links. A final annotated corpus turns out as good for
NER training as a manually annotated gold standard.

Finally, some researchers try to generalise NER to other categories, but keep the same machine-
learning-based approach. For example, (Ciaramita & Altun| (2006) developed a tagger, assigning
words in a text to one of 41 supersenses. Supersenses include NE categories, but also other labels,
such as plant, animal or shape. The authors projected word-sense annotations of publicly avail-
able corpora to supersenses and applied perceptron-trained Hidden Markov Model for sequence
classification, obtaining precision and recall around 77 per cent.

3.2 Entity Library

An entity library for DeepER contains knowledge about entities that is necessary for deep entity
recognition. Each of them consists of the following elements (entity #9751, describing the Polish
president, Bronistaw Komorowski):

— Main name: Bronistaw Komorowski,

Other names (aliases): Bronistaw Maria Komorowski, Komorowski,

— Description URL: http://pl.wikipedia.org/wiki/?curid=121267,

plWordNet synsets:

<podsekretarz1, podsekretarz stanul, wiceminister]> (vice-minister, undersecretary),
<wicemarszatekl > (vice-speaker of the Sejm, the Polish parliament),

<polityk1> (politician),

<wystannikl, posetl, postaniec2, wystaniecl, postannikl> (member of a parliament),
<marszatekl > (speaker of the Sejm),

<historyk1> (historian),

<minister! > (minister),

<prezydentl, prezydent miastal> (president of a city, mayor).

A process of entity library extraction is performed offline, before question answering. The library
built for deep entity recognition in RAFAEL, based on the Polish Wikipedia (857,952 articles,
51,866 disambiguation pages and 304,823 redirections), contains 809,786 entities with 1,169,452
names (972,592 unique). The algorithm does not depend on any particular feature of Wikipedia,
S0 any corpus containing entity definitions could be used.

Figure [3] shows an exemplary process of converting the first paragraph of a Polish Wikipedia
entry, describing former Polish president Lech Wal@saﬂ into a list of WordNet synsets. First, we
omit all unessential parts of the paragraph (1). This includes text in brackets or quotes, but also
introductory expressions like jeden z (one of) or typ (type of). Then, an entity name is detached
from the text by matching one of definition patterns (2). In the example we can see the most
common one, a dash (—). Next, all occurrences of separators (full stops, commas and semicolons)
are used to divide the text into separate chunks (3). The following step employs shallow parsing
annotation — only nominal groups that appear at the beginning of the chunks are passed on (4).
The first chunk that does not fulfil this requirement and all its successors get excluded from further
analysis (4.1). Finally, we split the coordination groups and check, whether their lemmas correspond

4 http://pl.wikipedia.org/wiki/Lech_Wa%C5%82%C4%99sa

http://pl.wikipedia.org/wiki/?curid=121267
http://pl.wikipedia.org/wiki/Lech_Wa%C5%82%C4%99sa

to any lexemes in WordNet (5). If not, the process repeats with the group replaced by its semantic
head. In case of polysemous words, only the first word sense (usually the most common) is taken
into account.

The whole process is more complicated than the simple example shows. Generally, it consists
of the following steps:

Step 0 Prepare a corpus — data format and annotation process is the same as for a knowledge
base, used in question answering, see section[2.3] It differs in scope of page categories, including
not only articles, but also disambiguation and redirection pages.

Step 1 For each of article pages, extract the first paragraph and apply readDefinition function. If
a resulting entity has a non-empty synset list, add it to the library. If some of the redirection
pages point to the entity name, add their names as entity aliases.

Step 2 For each of disambiguation pages, extract all items and apply readDefinition function. If
an item refers to an existing entity, extend it with extracted synsets and disambiguation page
name. Create a new entity otherwise. Add redirection names as previously.

Step 3 Save the obtained base for future use.

Input: text - annotated first paragraph of an encyclopaedic entry
Output: synsets - synsets describing an entity
begin
synsets = {};
text := removelnBrackets(text);
text := removelnQuotes(text);
foreach pattern in definitionPatterns do

if pattern matches text then

de finition := match(pattern,text).group(2);
L break;

de finition := removeDefinitionPrefixes(de finition);
parts := split(de finition,seperators);
foreach part in parts do
chunk := firstGroupOrWord(part);
if isNominal(chunk) then
L synsets := synsets U extractSynsets(chunk);

else break;

return synsets;

Algorithm 1: Function readDefinition(text) — interprets a definition to assign synsets to
an entity.

The readDefinition function (shown as algorithm analyses a given paragraph of text and
extracts a set of synsets, describing an entity, to which it corresponds, as exemplified by figure
Simplifying, it is done by removing all unnecessary text (in brackets or quotes), splitting it on
predefined separators (commas, full stops, semicolons) and applying extractSynsets function with
an appropriate stop criterion. The readDefinition makes use of the following elements:

removelInBrackets() removes everything that is between brackets ([|, () or {}) from the text
(step (1) in figure [3).

removelnQuotes() removes everything between single or double quotes from the text (step (1)
in the example).

definitionPatterns contains patterns of strings separating a defined concept from a definition,
e.g. hyphens or dashes (used in step (2) of the example) or jest to (is a).

removeDefinitionPrefizes() removes expressions commonly prefixing a nominal group, such as
jeden z (one of), typ (a type of) or klasa (a class of), not present in the example.

separators a set of three characters that separate parts of a definition: ".", "," and ";".

firstGroupOrWord() returns the longest syntactic element (syntactic group or word) starting
at the beginning of a chunk (step (4) in the example).

rem

Lech Wafesa (born 29 september 1943 in Popdw) — Polish politician and
trade-union activist. Co-founder and first chairman of ,Solidarnosc¢”, dissentient
during PRL. President of the Republic of Poland from 1990 to 1995, Nobel
Peace Prize laureate (1983), selected as Man of the Year (1981) and one of the
100 most influential people of century (1999) by , Time"” magazine.

Lech Watesa (ur. 29 wrzesnia 1943 w Popowie) — polski polityk i dziatacz \
zwigzkowy. Wspdizatozyciel i pierwszy przewodniczacy ,Solidarnosci”,
opozycjonista w okresie PRL. Prezydent Rzeczypospolitej Polskiej w latach
1990-1995, laureat Pokojowej Nagrody Nobla (1983), przez tygodnik , Time”
uznany za Czlowieka Roku (1981) oraz za jednego ze 100 najwazniejszych
ludzi stulecia (1999).

ove text in quotes and brackets

&

Lech Walesa {u—29-wrzesnia—1943-w-Pepewie} — polski polityk i dziatacz
zwigzkowy. Wspbélzatozyciel i pierwszy przewodniczacy ;Selidarreseir,
opozycjonista w okresie PRL. Prezydent Rzeczypospolitej Polskiej w latach
1990-1995, laureat Pokojowej Nagrody Nobla {3983}, przez tygodnik ;Fime™
uznany za Czlowieka Roku {29831} oraz za jednego ze 100 najwazniejszych
ludzi stulecia {4999}.

extract definition using pattern (2)

polski polityk i dziatacz zwigzkowy. Wspoétzatozyciel i pierwszy przewodniczacy,

opozycjonista w okresie PRL. Prezydent Rzeczypospolitej Polskiej w latach
1990-1995, laureat Pokojowej Nagrody Nobla, przez tygodnik uznany za
Cztowieka Roku oraz za jednego ze 100 najwazniejszych ludzi stulecia.

split on separators 3)

[polski polityk i dziatacz zwiazkowy] [Wspélzaboiyciel i pierwszy przewodniczqcy] [opozycjonista w okresie PRL]

[Prezydent Rzeczypospolitej Polskiej w latach 1990-1995] [laureat Pokojowej Nagrody Nobla] [uznany przez]

keep first nominal group in chunk 4)

(4:1)

[polski polityk i dziatacz zwiazkowy] [Wspc’)lzaboiyciel i pierwszy przewodniczacy] [opozycjonista w-ekresie-PRE]

[Prezydent Rzeczypospolitej Polskiej watach-1996—1995] [laureat Pokojowej Nagrody Nobla]

split coordinations, use semantic 5
head until a WordNet lexeme is found ®)

[PrezydentRieez—yﬁespelke}-PelrsHe}] [laureat Pekejewef-Nagrody-Nebla]

[opozycjonista]

[wspotzatozyciel]

{

I

[pelsk'r polityk] [dziatacz zwigzkewy] \ [pefws—zy przewodniczacy]

-~

}

[<wspotzatozyciel.1>

—

[<polityk.1>] [<dzia}acz.l, aktywista.1>] [<przewodniczacy.l>]

Extracted co-founder
synsets <

politician activist chairman

~

<prezydent.1, prezydent miasta.1> | mayor
<prezydent2> president (of a country)

<prezes-prezydent3> president, CEO

laureate

<opozycjonista.1>

dissentient

Fig. 3. Example of the entity extraction process in DeepER, transforming a Wikipedia entry of Lech

Walesa into a list of synsets.

isNominal() decides, whether a chunk is a noun in nominative, a nominal group or a coordination
of nominal groups.

Input: chunk - a nominal chunk (a syntactic group or a single noun)
Output: synsets - WordNet synsets corresponding to chunk
begin
lemma := lemmatise(chunk);
if inWordNet(lemma) then
L return getLezemes(lemma).synset(0),

else if isCoordination(chunk) then
synsets := {};
foreach element in chunk do
L synsets 1= synsets U extractSynsets(element);

return synsets;

else if isGroup(chunk) then
L return extractSynsets(chunk.semanticHead);

| else return {};

Algorithm 2: Function extractSynsets(chunk) — recursively extracts synsets from a nom-
inal chunk.

The extractSynsets function (shown as algorithm accepts a nominal chunk and extracts
WordNet synsets, corresponding to it. It operates recursively to dispose any unnecessary chunk
elements and find the longest subgroup, having a counterpart in WordNet. It corresponds to step
(5) in figure [3| and uses the following elements:

lemmatise() returns a lemma of a nominal group.

inWordNet() checks whether a given text corresponds to a lexeme in WordNet.
getLexemes() return a list of WordNet lexemes corresponding to a given text.
synset() return a synset including a lexeme in a given word sense number.
isCoordination() return TRUE iff a given chunk is a coordination group.
isGroup() return TRUE iff a given chunk is a group.

semanticHead is an element of a syntactic group, denoted as a semantic head.

A few of design decisions reflected in these procedures require further comment. First of all,
they differ a lot from the studies that involve a definition represented with a bag of words (Dakka
& Cucerzan), 2008; Ruiz-Casado et al., |2005; Balasuriya et al. [2009)). Here, a certain definition
structure is assumed, i.e. a series of nominal groups divided by separators. What is more, as the
full stop belongs to them, the series may continue beyond a single sentence, which has improved
recall in preliminary experiments. Availability of a shallow parsing layer and group lemmatisation
allows to query WordNet by syntactic groups instead of single nouns, as in work of [Toral & Mufioz
(2006). As word order is relatively free in Polish, a nominal group cannot be assumed to end with
a noun, like |Kazama & Torisawa| (2007) did. Instead, a semantic head of a group is used.

Finally, the problem of lack of word sense disambiguation remains — the line getLexemes(lemma).synset(0)
means that always a synset connected to the first meaning of a lexeme is selected. We assume that
it corresponds to the most common meaning, but that is not always the case — in our example
at figure [3| <prezydent.l, prezydent miasta.l> (president of a city, i.e. mayor) precedes <prezy-
dent.2> (president of a country, the obvious meaning). However, it does not have to harm QA
performance as far as the question analysis module (section functions analogously, e.g. in case
of a question beginning with ktéry prezydent... (which president. ..). Therefore, the decision has
been motivated by relatively good performance of this solution in previously performed experi-
ments on question analysis (Przybytal [2013a)). It also works in other applications, e.g. gazetteers
generation (Toral & Munoz, 2006).

To assess quality of the entity library, its content has been compared with synsets manually
extracted from randomly selected 100 Wikipedia articles. 95 of them contain a description of an

entity in the first paragraph. Among those, DeepER entity library includes 88 (per-entity recall
92.63 per cent). 135 synsets have been manually assigned to those entities, while the corresponding
set in library contains 133 items. 106 of them are equal (per-synset precision 79,70 per cent), while
13 differ only by word sense. 16 of manually extracted synsets hove no counterpart in the entity
library (per-synset recall 88.15 per cent), which instead includes 14 false synsets.

3.3 Entity Recognition

An entity recognition step is performed within the question answering process and aims at selecting
all entity mentions in a given annotated document. Before it begins, the entity library is read into
a PATRICIA trie, a very efficient prefix tree. In this structure, every entity name becomes a key
for storing a corresponding list of entities.

When a document is ready for analysis, it is searched for strings that match any of the keys in
the trie. The candidate chunks (sequences of segments) come from three sources:

1. lemmata of words and syntactic groups,
2. sequences of words in surface forms (as they appear in text),
3. sequences of words in base forms (lemmata).

The last two techniques are necessary, because a nominal group lemmatisation often fails, especially
in case of proper names. Their rich inflection in Polish (Przepiérkowski, [2007)) means that a nominal
suffix of an entity may be hard to predict. Therefore, a chunk is considered to match an entity
name if:

— they share a common prefix,
— an unmatched suffix in neither of them is longer than 3 characters,
— the common prefix is longer than the unmatched chunk suffix.

Given a list of entity mentions, RAFAEL checks their compatibility with a question model. Two
of its constituents are taken into account: a general question type and a synset. An entity mention
agrees with NAMED ENTITY type if its first segment starts with a capital letter and always
agrees with UNNAMED ENTITY. To pass a semantic agreement test, the synset of the question
model needs to be a (direct or indirect) hypernym of one of the synsets assigned to the entity. For
example, list of synsets assigned to entity Jan III Sobieski contains <krol.1> (king), so it matches
a question focus <wtladca.l, panujacy.l, hierarcha.2, pan.1> (ruler) through a hypernymy path
<wladca.1, panujacy.1, hierarcha.2, pan.1> — <monarcha.l, koronowana gtowa.1> (monarch) —
<krol.1>>. All the mentions of entities satisfying these conditions are returned for further processing.

4 Evaluation

Evaluation of RAFAEL is typical for factoid QA systems: given a knowledge base and and questions,
its responses are compared to the expected ones, prepared in advance. Section describes data
used in this procedure, whereas section [{.2]explains how an automatic evaluation is possible without
human labour.

4.1 Data

The Polish Wikipedia serves as a knowledge base. It has been downloaded from a project site
as a single database dump at 03.03.2013, from which plain text files have been extracted using
Wikipedia Extractor 2.2 scrip It means that only plain text is taken into account — without
lists, infoboxes, tables, etc. This procedure leads to a corpus with 895,486 documents, containing
168,982,550 segments, which undergo the annotation process, described in section [2.3

The questions that are to be answered with the knowledge base come from two separate sets:

® http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

1. Development set bases on 1500 (1130 after ﬁlteringﬁ) questions from a Polish quiz TV show,
called Jeden z dziesieciu (Karzewski, [1997)). It was involved in previous experiments (Przybyla,
2013blfal).

2. FEwvaluation set bases on an open dataset for Polish QA systems, published by [Marcinczuk et al.
(2013). It has been gathered from Did you know... column, appearing in the main page of
the Polish Wikipedia. It contains 4721 questions, from which 1000 have been analysed, which
resulted in 576 satisfying the task constrains, given in chapter

Table [I] shows a distribution of different question types and named entity types in the sets.

General type Named entity type Development Final evaluation

WHICH - 2.39% 0.17%
TRUEORFALSE - 2.21% 0.87%
MULTIPLE - 2.57% 8.33%
OTHER NAME - 2.04% 0.87%
UNNAMED ENTITY - 32.30% 16.67%
PLACE 2.83% 9.03%

CONTINENT 0.35% 0.17%

RIVER 0.97% 0.17%

LAKE 0.80% 0.00%

MOUNTAIN 0.35% 0.52%

RANGE 0.18% 0.17%

ISLAND 0.44% 0.17%
ARCHIPELAGO 0.18% 0.00%

SEA 0.18% 0.00%

CELESTIAL BODY 0.71% 0.17%

COUNTRY 4.60% 0.35%

STATE 0.62% 0.17%

CITY 4.69% 0.35%
NATIONALITY 1.06% 0.17%

PERSON 22.92% 36.81%

NAMED ENTITY NAME 0.97% 0.00%
SURNAME 0.88% 0.00%

BAND 0.53% 0.17%

DYNASTY 0.53% 0.17%
ORGANISATION 1.86% 3.47%

COMPANY 0.18% 0.52%

EVENT 0.97% 1.39%

TIME 0.18% 3.82%

CENTURY 0.80% 0.00%

YEAR 3.01% 0.69%

PERIOD 0.09% 0.17%

COUNT 2.74% 7.64%

QUANTITY 0.53% 1.74%

VEHICLE 0.88% 1.74%

ANIMAL 0.09% 0.00%

TITLE 3.36% 3.47%

Table 1. A distribution of different general types and named entity types in development (1130 questions)
and final evaluation (576 questions) sets.

To each of the questions from both sets some information has been assigned manually. It includes
an identification number, an expected answer string, a general question type, a named entity type
(if applicable) and an expected source document. Table [2| contains several exemplary questions
from the development set.

5 The questions that were filtered out either do not belong to factoid category, as defined at the beginning
of chapter [2] (e.g. demand calculations, translations or long explanations) or lack answer in the Polish
Wikipedia.

Question
Question type Source article Answer
W ktoérym roku umart Stefan Zeromski?
What year did Stefan Zeromski die?
NAMED ENTITY
:YEAR
Jakie organella nadaja barwe korzeniom marchwi?
What organelles does the carrot take its colour from?
UNNAMED ENTITY Chromoplast Chromoplasty
- Chromoplasts
Jakiego wyznania jest wigkszo$¢ mieszkancow Liechtensteinu?
What is the magjor confession in Liechtenstein?
UNNAMED ENTITY Liechtenstein Katolicyzm
- Catholicism
Ktory z filozoféw byl tworcg ,atomizmu’?
Which philosopher formulated the atomic theory?
NAMED ENTITY Demokryt z Abdery
:PERSON Democritus of Abdera
Czy Jacques Brel pochodzil z Francji?
Was Jacques Brel born in France?

TRUEORFALSE Jacques Brel

Stefan Zeromski 1925

Demokryt

Nie

No

Table 2. Exemplary questions with their types (general and named entity), expected source articles and
answers.

The additional information (question types and expected documents) makes it possible to
evaluate only selected modules of the whole QA system. For example, we could test question
classification by comparing results against given question types or entity selection by analysing
only the relevant document.

4.2 Automatic Evaluation

Thanks to availability of the DeepER entity library, it is possible to automatically perform answer
evaluation for all the question types that are recognised by this technique (UNNAMED ENTITY
and NAMED ENTITY excluding dates, numbers and quantities).

Both an expected and obtained answer are represented as short strings, e.g. Bronistaw Ko-
morowski. However, it does not suffice to check their exact equality. That is caused by existence
of different names for one entity (Bronistaw Maria Komorowski or Komorowski), but also rich
nominal inflection (Komorowskiego, Komorowskiemu, .. .).

In fact, we want to compare entities, not names. Hence, deep entity recognition is a natural
solution here. To check correctness of an answer, we use it as an input for the recognition process,
described in section [3:3] Then, it is enough to check whether the expected answer appears in any
of lists of names, assigned to the recognized entities. For example, let us consider a question: Kto
jest obecnie prezydentem Polski? (Who is the current president of Poland?) with expected answer
Bronistaw Komorowski and a system answer Komorowski. The DeepER process finds many entities
in the string (all the persons bearing this popular surname). One of them is the question goal, hence,
has Bronistaw Komorowski in its list of names.

As the process of entity recognition is imperfect, so is the automatic evaluation. However, it
still lets us to notice general trends in answering performance with respect to several factors. Of
course, the final evaluation needs to be checked manually.

5 Results

As mentioned in previous section, the results consist of two groups: experiments, showing an
influence of some aspects of algorithm on performance, and a final assessment. Both use the Polish
Wikipedia as a knowledge base, whereas the questions asked belong to development and evaluation

sets, respectively. In this section, recall measures percentage of questions, to which RAFAEL gave
any answer, whereas precision denotes percentage of question answered correctly.

When analysing results of different entity recognition techniques, we need to remember that
they strongly rely on output of the question analysis, which is not perfect. In particular, tests show
that 15.65 per cent of questions is assigned to wrong type and 17.81 per cent search results do not
include the expected document (Przybyta) |2013a). The entity recognition (ER) stage, a focus of
this work, is very unlikely to deliver valid answers in these cases. However, as the expected question
type and source document are available in question metadata, it is possible to correct results of
question analysis by artificially replacing a wrong type and/or adding the expected document to
the retrieved set. In that way the ER modules could be evaluated, as if question analysis worked
perfectly. Note that this approach slightly favours NER-based solutions as the question metadata
contains general types and named entity types but lack focus synsets, used by DeepER.

5.1 Experiments

The goal of the first experiment is to test how number a of documents retrieved from the search
engine and analysed by the entity recognition techniques, influences the performance. Question
classification errors have been bypassed as described in the previous paragraph. Additionally, two
versions have been evaluated: with and without corrections of a retrieved set of documents. Figure
[] demonstrates results for different entity recognition techniques.

As we can see, if a retrieved set contains the desired article, adding new documents slightly
increases recall, while precision drops observably. That is because additional irrelevant documents
usually introduce noise. However, in some cases they are useful, as increasing recall indicates. On
the other hand, if we have no guarantee of presence of the expected document in a list, it seems
more desirable to extend it, especially for small sizes. For sets bigger than 50 elements, the noise
factor again dominates our results. Judging by F1 measure, the optimal value is 20 documents.

When it comes to the comparison, it should be noted that DeepER performs noticeably better
than traditional NER. The gain in precision is small, but recall is almost twice as big. It could be
easily explained by the fact that the NER solutions are unable to handle UNNAMED ENTITY
type, which accounts for 36 per cent of the entity questions.

It is also worthwhile to check how the system performs while using different values of minimal
confidence rate (Jaccard similarity), as described in section It could become useful when
we demand higher precision and approve lower recall ratio. The plot in figure [5| shows answering
performance using DeepER with corrected question analysis with respect to the minimal confidence
rate. Generally, the system behaves as expected, but the exact values disappoint. The precision
remain at a level of 25-40 per cent up to confidence 0.75, where in turn recall drops to 0.35 per
cent only. Values of F1 measure suggest that 0.2 is the highest sensible confidence rate.

One more parameter worth testing, explained in section [2.7] is the context generation strategy.
To find the entity with a context most similar to a question content, we could analyse a single
sentence, where it appears, or a sequence of words of a predefined lengtlrﬂ For both of these solu-
tions, we could also add a document title, as it is likely to be referred to by anaphoric expressions.
Figure |§| shows the value of precision (recall does not depend on context) for these four solutions.

We can see that inclusion of a title in a context helps to achieve a better precision. The impact
of anaphoric reference to title emerges clearly in case of flexible context — the difference grows with
context size. Quite surprisingly, for the optimal context length (1.5 * question size), it is on the
contrary. However, because of the small difference between the techniques including title, for the
sake of simplicity, the single sentence is used in the final evaluation.

5.2 Final System Evaluation

To impose a realistic challenge to the system, the evaluation set, used at this stage, substantially
differs from the one used during the development (see section . A configuration for the final
evaluation has been prepared based on results of the experiments. All of the tested versions share
the following features:

— no question analysis corrections,

" Expressed as a multiplication of question content size.

Recall (with correct source)

0.95 IRAN P AR ¢ B O A AR
IRy

08507 .

0.8 B

0.75 - B

0.7 - J

0.65 - B

0.6 B

0.55 SENVEEEENVEEENVEEENPE -
B -

05 -7 Ll Ll L
1 10 100 1000

Precision (with correct source)
0.65 T T —
Nerf ——
065% Liner2 - =% - 7
055 L DeepER ----©- |

0.5
0.45
0.4
0.35
0.3
0.25

0.2

F1 measure (with correct source)

0.75

07%
0.65 | "

0.6 -
0.55a
0.5
0.45
0.4
0.35
0.3

1

1000

10 100
Number of documents (with correct source)

0.95

Recall (plain)

0.85

0.8 | .~

0.754
0.7
0.65
0.6
0.55 -
0.5 ¢
0.45 %
0.4

M

0.29

10 100

Precision (plain)

0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

o)
UBUTER > S a s R R

0.2

10 100

F1 measure (plain)

0.44

0.42

0.4 -
0.38 -
0.36

0.34
0.32
0.3

0.28

o)
T "'_,‘-UL-‘»‘.‘@»"W\‘. T

—
00,
)

10 100

Number of documents (plain)

1000

Fig. 4. Question answering performance with respect to size of a retrieved set of documents, undergoing a
full analysis. Two versions are considered — with and without guaranteed presence of an article, containing
the desired information, in a set. The results for different entity recognition techniques— traditional NER
(Nerf, Liner2) and DeepER.

1 T

T
Recall ——
1 Precision - =% -
F1 measure ---©O--

0 0.2 0.4 0.6 0.8 1
Confidence rate

Fig. 5. RAFAEL performance with respect to minimal confidence rate. Results computed using DeepER
with corrected question type and corrected list of 50 documents.

03 T T T T T T T T T
0.28 |-
0.26 |-
0.24 -
0.22 |-
0.2
0.18 |-
0.16 |-
0.14 + Flexible (with title) —— N
Flexible (without title) - -G -
Single sentence (with title) —-—-—-
Single sentence (without title) ----------
0.12 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Context size

Fig. 6. Question answering performance for different context generation strategies: single sentence and
sequence of segments of certain length. Both types considered with and without an article title added.

question classification and query generation solutions which proved best in the previous exper-
iments (see section [2.4)),

— a retrieved set of documents including 20 articles,

— no minimal confidence,

singe sentence context with title.

Tested solutions differ with respect to entity recognition only; RAFEL variants based on the
following options are considered:

— quantities recognizer (Quant),

traditional NER solutions: Nerf and Liner2,

deep entity recognition (DeepER),

hybrid approach, where entity mentions were gathered from all the above sources.

Recall Precision F1 measure MRR
ER manual auto
solution value o value o value value o value o
Quant 9.55% 1.19% 27.27% 5.6% - 0.1415 0.0162 26.71% 4.86%
Nerf 56.25% 2.12% 34.88% 2.73% - 0.4306 0.0213 33.66% 2.29%
Liner2 45.31% 2.05% 39.08% 2.90% 34.10% 0.4197 0.0188 41.36% 2.70%
DeepER 72.92% 1.88% 35.24% 2.23% 33.89% 0.4751 0.0214 32.80% 1.99%
Hybrid 89.58% 1.24% 33.14% 2.01% - 0.4838 0.0221 35.57% 1.88%
Table 3. Question answering accuracy of RAFAEL with different entity recognition strategies: quantities
only (Quant), traditional NER (Nerf, Liner2), deep entity recognition (DeepER) and their combination
(Hybrid).

Table[3]shows results of the final evaluation, expressed by recall, precision, F1 measure and Mean
Reciprocal Rank (MRR)EI Standard deviations of these values have been obtained by bootstrap
resampling of the test set. Additionally, precision obtained by automatic evaluation has been added,
where applicableﬂ As we can see, only a small percentage of questions is handled by the quantitative
entities recognition. NER-based solutions deal with slightly more (Nerf) or less (Liner2) than a
half of the questions. When using DeepER, the recall ratio rises to 73 per cent while the precision
does not differ significantly. That is because UNNAMED ENTITY questions (unreachable for
traditional NER) account for a substantial part of the test set. The maximum recall is obtained
by the hybrid solution (90 per cent) but it comes at a cost of lower precision (33 per cent). On the
other hand, when we take the whole ranking lists into account, traditional NERs seem to perform
better (in terms of MRR).

As expected, the automatic evaluation underestimates precision, but the difference remains
below 5 per cent. Judging by F1 measure, the hybrid solution seems to beat the others.

6 Discussion

The main strength of DeepER compared to NER, according to results shown in figure [3] is much
higher recall. Table [] shows examples of questions, to which only DeepER provides a correct
answer. As we can see (notice question foci in the table), they could not be assigned to any of the
traditional NE categories.

The other striking fact in the results is low precision. A part of the wrong answers was inspected
and most of the errors seem to result from the following phenomena:

— Information given in question in concise form, in article appears scattered over many sentences.

8 Evaluated automatically due to length of ranking lists.
9 Results obtained using Quant and Nerf may be expressed by quantities and dates, which are not
supported by the entity-based automatic evaluation

Question
Question focus Answer
Ktory zleb uwazany jest za najbardziej lawiniasty w calych Karpatach?
Which gulley is considered the most avalanche-prone in the Carpathians?
zleb

qulley Pusty Zleb
Jaki owad pozera liscie owadozernej rosiczki?
What insect feeds on leaves of carnivorous sundew?
owad Piérolotek bagniczek
insect Buckleria paludum

Jaki przyrzad pozwala na pomiar wspolczynnika zalamania Swiatta?
What apparatus is used to measure the refractive index?
przyrzad Refraktometr Abbego
apparatus Abbe refractometer
Jaki zwiazek chemiczny stuzy do otrzymywania boru o wysokiej czystosci?
What chemical compound is used to obtain boron of high purity?
zwiazek chemiczny Jodek boru
chemical compound Boron triiodide
Jaka metoda tamano szyfry Enigmy przed wynalezieniem cyklometru?
What method was used to decrypt Enigma cipher before the advent of the cyclometer?
metoda Metoda rusztu
method Grill
Table 4. Examples of questions which have been handled and answered correctly only with the DeepER
approach. Their foci lie beyond areas covered by the NE categories.

— Some of the pairs of words in question content and answer context are very related morpho-
logically or semantically, but differ in lemmata, e.g. fowca (huntsman) and towiectwo (hunts-
manship) or mysliwy (huntsman).

— Because of rich inflection in Polish, a tagger quite often fails to select the correct lemma of a
word, especially in case of proper names.

— If several entities of a desired type appear in one sentence, the bag-of-words model does not
suffice to select the best one.

The entity recognizers also introduce errors typical for them:

— Quant ignores quantity types; therefore, a year is frequently returned as an answer to questions
beginning with How many

— Nerf and Liner2 have insufficient recall — they recognize only a fraction of entities of a desired
type.

— DeepER suffers from lack of word sense disambiguation, which impedes WordNet-based infer-
ence.

The last remark applies also to other techniques. For example, consider a word kot, which means
a cat. However, it is also a name of a journal, a lake, a village, a badge (KOT), a surname of 10
persons in the Polish Wikipedia and much more. A human would usually assume the most common
meaning (a cat), but the system treats them as equally probable. It introduces noise in the process,
as such an entity matches many types of questions.

Another thing that demands explanation is a difference in precision of answers found using
Liner2 and DeepER: in evaluation set the latter does not maintain its advantage from development
set. It could be explained by different compositions of the question sets (table|l)) — the development
one contains much more questions beginning with ambiguous pronouns, followed by a question
focus, e.g. Ktdry poeta... (which poet), thus providing a precise synset (a poet) for deep entity
recognition. Members of the evaluation set much more frequently begin with pronouns like Kto
... (who), where a synset corresponds to a general NE type (a person).

As RAFAEL is the first Polish QA system, able to answer by entities instead of documents, we
can not compare it directly to any other solution. However, the evaluation set has been created
based on questions published by [Marciriczuk et al. (2013)) and used for evaluation of a document
retrieval system (Marciniczuk et al.l|2013]). Their baseline configuration achieved a@1 (percentage of

questions answered by the first document, corresponds to precision in table[3]) equal 26.09 per cent.
By taking into account proximity of keyword matches (MCSW method), they improved the result
to 38.63 per cent. We can see that RAFAEL, despite solving much more challenging problem, in all
configurations obtains better precision than baseline; using Liner2 it beats even the best method
tested on this set (MCSW).

The results suggest two possible directions of future work to improve performance of RAFAEL.
Firstly, involving semantics in sentence matching could solve some of the problems mentioned
above. There are a lot of techniques in that area, also in QA systems (see a variety of them used
by [Yih et al.| (2013)), but their implementation in a morphologically rich language would require
a thorough study. For example, there exist techniques computing a semantic similarity based on a
WordNet graph (Moldovan & Novischil, 2002), which is available for Polish and proved very useful
in this study. Secondly, the relatively good performance of hybrid ER indicates that it may be good
to apply different entity recognizer to different questions. For example, we could evaluate them for
each question type separately and select the one that performs best for a given one. However, it
would require much more training data to have a substantial number of questions of each type,
including the scarce ones (observe sparsity of table .

When it comes to DeepER, word ambiguity seem to be the main issue for future efforts. Of
course, a full-lexicon precise word-sense disambiguation tool would solve the problem, but we can’t
expect it in near future. Instead, we could select a synset somewhere in a path between a focus
synset and a named entity type. In the example from figure [3]rather than choosing between <prezy-
dent.1, prezydent miasta.1> (president of a city) and <prezydent.2> (president of a country) we
could use <urzednik.1, biuralista.1> (official), which covers both meanings.

7 Conclusions

This paper introduces RAFAEL, a complete open-domain question answering system for Polish.
It is capable of analysing a given question, scanning a large corpus and extracting an answer,
represented as a short string of text.

In its design, the focus has been on entity recognition techniques, used to extract all the
entities compatible with a question from a given text. Apart from the traditional named entity
recognition, differentiating between several broad categories of NEs, a novel technique, called Deep
Entity Recognition (DeepER), has been proposed and implemented. It is able to find entities
belonging to a given WordNet synset, using an entity library, gathered by interpreting definitions
from encyclopaedia.

Automatic evaluation, provided by DeepER approach, has let to perform several experiments,
showing answering accuracy with respect to different parameters. Their conclusions have been
used to prepare final evaluation, which results have been checked manually. They suggest that the
DeepER-based solution yields similar precision to NER, but is able to answer much more questions,
including those beyond the traditional categories of named entities.

Appendix A: Named Entity Recognition in RAFAEL

As mentioned in section [2.6] apart from DeepER, RAFAEL employs also traditional NER-based
solutions for entity recognition: NERF, Liner2 and Quant. Each of them uses its own typology of
named entities, which covers only a part of the types, enumerated in section [2.4] Table [f] shows a
correspondence between these types. As we can see, there are a few problems:

1. Many of NE types are not covered by neither NERF nor Liner?2,

2. For all geographical types, NERF has only one type geogName, which may affect QA precision,

3. In case of CENTURY and YEAR, NERF recognizes only a more general type date, from which
they may be inferred,

4. Liner2 does not differentiate between NAME and SURNAME, classifying both as parts of

person__nam.

The problems 3 and 4 are solved by an additional postprocessing code, extracting CENTURY
from date and NAME and SURNAME from person_ nam entities. In case of multi-segment person
entities it assumes that the first and last word correspond to first and last name, respectively.

Question NE type NERF type Liner2 type Quant type
PLACE placeName:*
CONTINENT continent nam
RIVER river _nam
LAKE
MOUNTAIN
RANGE geogName mountain _nam
ISLAND island nam
ARCHIPELAGO
SEA sea_ nam
CELESTIAL BODY astronomical nam
COUNTRY placeName:country country nam
adminl nam
admin2 nam
STATE placeName:region admin3 nam
historical region nam
country_region_nam
CITY placeName:settlement city nam
NATIONALITY placeName:country nation nam
PERSON persName
NAME persName:forename person_nam
SURNAME persName:surname
BAND orgName band nam
DYNASTY persName:addName
organization nam
ORGANISATION orgName institution _nam
political party nam
COMPANY orgName company nam
EVENT event nam
TIME
CENTURY date
YEAR
PERIOD quantity
COUNT number
QUANTITY quantity
VEHICLE
ANIMAL
TITLE title _nam

media_nam

Table 5. Correspondence between named entity types from question analysis and supported by different

NER solutions.

While NERF and Liner2 are standalone NER tools and details of their design are available
in previously mentioned publications, Quant has been created specifically for RAFAEL. To find
numbers, it annotates all chains of segments according to a predefined pattern, which accepts the
following types of segments:

1. (0-9)+ — a string consisting of digits only,

2. . — a period; a digit group separator in Polish ,

3. , —a comma; a decimal mark in Polish ,

4. num — a verbal expression of number, i.e. segments tagged as numerals.

The pattern is matched in greedy mode, i.e. it adds as many new segments as possible. It could
recognise expressions like 10 tysiecy (10 thousand), kilka milionéw (several million), 10 000 or
1.698,88 (1,698.88).

Quantity is a sequence of segments, recognised as a number, followed by a unit of measurement.
To check whether a word denotes a unit of measurement, the plWordNet is searched for lexemes
equal to its base. Then it suffices to check whether it belongs to a synset, having <jednostka miary
1> (unit of measurement) as one of (direct or indirect) hypernyms, e.g. pietnascie kilogramdw
(fifteen kilograms) or 5 000 watéw (5 000 watts).

Acknowledgments

Study was supported by research fellowship within "Information technologies: research and their
interdisciplinary applications" agreement number POKL.04.01.01-00-051/10-00. Critical reading of
the manuscript by Agnieszka Mykowiecka and Aleksandra Brzeziniska is gratefully acknowledged.

Bibliography

Acedanski, S. (2010). A morphosyntactic Brill Tagger for inflectional languages. In Proceedings
of the Tth international conference on Advances in Natural Language Processing (IceTAL’10),
(pp- 3-14). Springer-Verlag.

Ahn, D, Jijkoun, V., Mishne, G., Miiller, K., De Rijke, M., & Schlobach, S. (2004). Using Wikipedia
at the TREC QA Track. In Voorhees, E. M. & Buckland, L. P. (Eds.), Proceedings of The
Thirteenth Text REtrieval Conference (TREC 2004).

Armenska, J., Tomovski, A., Zdravkova, K., & Pehcevski, J. (2010). Information Retrieval Using
a Macedonian Test Collection for Question Answering. In Proceedings of the 2nd International
Conference ICT Innovations, (pp. 205-214). Springer-Verlag,.

Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., & Curran, J. R. (2009). Named entity
recognition in Wikipedia. In Proceedings of the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources, (pp. 10-18)., Association for Computational
Linguistics.

Brill, E., Dumais, S., & Banko, M. (2002). An analysis of the AskMSR question-answering system.
In Proceedings of the ACL-02 conference on Empirical methods in natural language processing -
EMNLP ’02, volume 10, (pp. 257-264). Association for Computational Linguistics.

Ciaramita, M. & Altun, Y. (2006). Broad-coverage sense disambiguation and information extrac-
tion with a supersense sequence tagger. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing - EMNLP ’06, (pp. 594). Association for Computa-
tional Linguistics.

Dakka, W. & Cucerzan, S. (2008). Augmenting Wikipedia with Named Entity Tags. In Proceedings
of the Third International Joint Conference on Natural Language Processing (IJCNLP 2008).
Dang, H. T., Kelly, D., & Lin, J. (2007). Overview of the TREC 2007 Question Answering track.

In Proceedings of The Sizteenth Text RFEtrieval Conference, TREC 2007.

Degorski, L. (2012). Towards the Lemmatisation of Polish Nominal Syntactic Groups Using a
Shallow Grammar. In Bouvry, P., Klopotek, M. A.; Leprévost, F., Marciniak, M., Mykowiecka,
A., & Rybinski, H. (Eds.), Proceedings of the International Joint Conference on Security and
Intelligent Information Systems, volume 7053 of Lecture Notes in Computer Science, (pp. 370—
378). Springer-Verlag.

Duclaye, F., Sitko, J., Filoche, P., & Collin, O. (2002). A Polish Question-Answering System
for Business Information. In BIS 2002, 5th International Conference on Business Information
Systems, Poznan, Poland, 24-25 April 2002, (pp. 209-212).

Ferrucci, D. A., Brown, E., Chu-carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., Lally, A.,
Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N., & Welty, C. (2010). Building Watson: An
Overview of the DeepQA Project. AI Magazine, 31(3), 59-79.

Galambos, L. (2001). Lemmatizer for Document Information Retrieval Systems in JAVA. In
Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM 2001), (pp. 243-252). Springer-Verlag.

Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Girju, R.,
Rus, V., & Morarescu, P. (2001). The role of lexico-semantic feedback in open-domain textual
question-answering. In Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics - ACL ’01, (pp. 282—289). Association for Computational Linguistics.

Hovy, E., Gerber, L., Hermjakob, U., Junk, M., & Lin, C.-Y. (2000). Question Answering in
Webclopedia. In Proceedings of The Ninth Text REtrieval Conference (TREC 2000).

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37, 547-579.

Karzewski, M. (1997). Jeden z dziesieciu - pytania i odpowiedzi. Muza SA.

Katz, B., Lin, J., Loreto, D., Hildebrandt, W., Bilotti, M., Felshin, S., Fernandes, A., Marton, G.,
& Mora, F. (2003). Integrating Web-based and corpus-based techniques for question answering.
In Proceedings of the Twelfth Text REtrieval Conference (TREC 2003).

Kazama, J. & Torisawa, K. (2007). Exploiting Wikipedia as External Knowledge for Named Entity
Recognition. In In Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (2007), (pp. 698—-707). Association for Computational
Linguistics.

Konopik, M. & Rohlik, O. (2010). Question Answering for Not Yet Semantic Web. In Proceedings
of the 13th International Conference on Text, Speech and Dialogue (TSD 2010), (pp. 125-132).
Springer-Verlag.

Kopeé, M. & Ogrodniczuk, M. (2012). Creating a Coreference Resolution System for Polish. In
The eighth international conference on Language Resources and Evaluation (LREC). European
Language Resources Association (ELRA).

Lee, C., Wang, J.-H., Kim, H.-J., & Jang, M.-G. (2005). Extracting Template for Knowledge-
based Question-Answering Using Conditional Random Fields. In Proceedings of the 28th Annual
International ACM SIGIR Workshop on MFIR, (pp. 428-434). ACM.

Li, X. & Roth, D. (2002). Learning Question Classifiers. In Proceedings of the 19th International
Conference on Computational Linguistics (COLING-2002), volume 1 of COLING ’02. Associa-
tion for Computational Linguistics.

Lombarovi¢, T., Snajder, J., & Basi¢, B. D. (2011). Question Classification for a Croatian QA
System. In Proceedings of the 14th International Conference on Text, Speech and Dialogue
(TSD 2011), (pp. 403-410). Springer-Verlag.

Mann, G. S. (2002). Fine-grained proper noun ontologies for question answering. In Proceedings of
the 2002 workshop on Building and using semantic networks (SEMANET ’02), volume 11, (pp.
1-7). Association for Computational Linguistics.

Marciniczuk, M. & Janicki, M. (2012). Optimizing CRF-based Model for Proper Name Recognition
in Polish Texts. In Proceedings of CICLing 2012, Part I, (pp. 258-269). Springer-Verlag.

Marcinezuk, M., Ptak, M., Radziszewski, A., & Piasecki, M. (2013). Open dataset for development
of Polish Question Answering systems. In Proceedings of the 6th Language & Technology Con-
ference: Human Language Technologies as a Challenge for Computer Science and Linguistics.
Wydawnictwo Poznariskie, Fundacja Uniwersytetu im. Adama Mickiewicza.

Marciniczuk, M., Radziszewski, A., Piasecki, M., Piasecki, D., & Ptak, M. (2013). Evaluation of
a Baseline Information Retrieval for a Polish Open-domain Question Answering System. In
Proceedings of the International Conference Recent Advances in Natural Language Processing
(RANLP 2013), (pp. 428-435). Association for Computational Linguistics.

Maziarz, M., Piasecki, M., & Szpakowicz, S. (2012). Approaching plWordNet 2.0. In Proceedings
of the 6th Global Wordnet Conference.

Moldovan, D., Harabagiu, S., Pagca, M., Mihalcea, R., Girju, R., Goodrum, R., & Rus, V. (2000).
The structure and performance of an open-domain question answering system. In Proceedings of

the 38th Annual Meeting on Association for Computational Linguistics - ACL 00, (pp. 563-570).
Association for Computational Linguistics.

Moldovan, D. & Novischi, A. (2002). Lexical chains for question answering. In Proceedings of the
19th International Conference on Computational Linguistics (COLING-2002). Association for
Computational Linguistics.

Oh, J.-h., Torisawa, K., Hashimoto, C., Sano, M., Saeger, S. D., & Ohtake, K. (2013). Why-
Question Answering using Intra- and Inter-Sentential Causal Relations. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics, (pp. 1733-1743). Association
for Computational Linguistics.

Osenova, P., Simov, A., Simov, K., Tanev, H., & Kouylekov, M. (2004). Bulgarian-english question
answering: adaptation of language resources. In Peters, C., Clough, P., Gonzalo, J., Jones, G.
J. F., Kluck, M., & Magnini, B. (Eds.), Proceedings of the 5th conference on Cross-Language
Evaluation Forum: multilingual Information Access for Text, Speech and Images (CLEF’04),
volume 3491 of Lecture Notes in Computer Science, (pp. 458-469). Springer-Verlag.

Peshterliev, S. & Koychev, I. (2011). Semantic Retrieval Approach to Factoid Question Answering
for Bulgarian. In Proceedings of the 3rd International Conference on Software, Services and
Semantic Technologies (S8T 2011), (pp. 25-32). Springer-Verlag.

Piechociriski, D. & Mykowiecka, A. (2005). Question answering in Polish using shallow parsing. In
Garabik, R. (Ed.), Computer Treatment of Slavic and East European Languages: Proceedings of
the Third International Seminar, Bratislava, Slovakia, (pp. 167-173). VEDA: Vydava- tel’stvo
Slovenskej akadéme vied.

Ponzetto, S. P. & Strube, M. (2007). Deriving a Large Scale Taxonomy from Wikipedia. Artificial
Intelligence, 22, 1440-1445.

Przepiorkowski, A. (2007). Slavonic information extraction and partial parsing. In Proceedings
of the Workshop on Balto-Slavonic Natural Language Processing Information Extraction and
Enabling Technologies - ACL ’07. Association for Computational Linguistics.

Przepiorkowski, A. (2008). Powierzchniowe przetwarzanie jezyka polskiego. Warszawa: Akademicka
Oficyna Wydawnicza EXIT.

Przepiorkowski, A., Baiiko, M., Gorski, R. L., & Lewandowska-Tomaszczyk, B. (2012). Narodowy
Korpus Jezyka Polskiego. Warszawa: Wydawnictwo Naukowe PWN.

Przybyla, P. (2012). Issues of Polish Question Answering. In Hryniewicz, O., Mielniczuk, J.,
Penczek, W., & Waniewski, J. (Eds.), Proceedings of the first conference ’Information Technolo-
gies: Research and their Interdisciplinary Applications’ (ITRIA 2012), (pp. 122-139)., Warsaw.
Institute of Computer Science, Polish Academy of Sciences.

Przybyta, P. (2013a). Question Analysis for Polish Question Answering. In 51st Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Student Research Workshop,
(pp- 96-102)., Sofia, Bulgaria. Association for Computational Linguistics.

Przybyla, P. (2013b). Question Classification for Polish Question Answering. In Klopotek, M. A,
Koronacki, J., Marciniak, M., Mykowiecka, A., & Wierzchon, S. T. (Eds.), Proceedings of the 20th
International Conference on Language Processing and Intelligent Information Systems (LPEIIS
2013), (pp. 50-56). Springer-Verlag,.

Richman, A. E. & Schone, P. (2008). Mining Wiki Resources for Multilingual Named Entity
Recognition. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics (ACL 2008). Association for Computational Linguistics.

Ruiz-Casado, M., Alfonseca, E., & Castells, P. (2005). Automatic Assignment of Wikipedia Ency-
clopedic Entries to WordNet Synsets. Advances in Web Intelligence, 3528, 380-386.

Savary, A., Manicki, L., & Baron, M. (2013). Populating a multilingual ontology of proper names
from open sources. Journal of Language Modelling, 1(2), 189-225.

Savary, A. & Waszczuk, J. (2012). Narzedzia do anotacji jednostek nazewniczych. In Narodowy Ko-
rpus Jezyka Polskiego [Eng.: National Corpus of Polish] (pp. 225-252). Wydawnictwo Naukowe
PWN.

Shapiro, S. C. (1992). Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc.

Simov, K. & Osenova, P. (2005). BulQA: Bulgarian—bulgarian question answering at CLEF 2005.
In Peters, C., Gey, F. C., Gonzalo, J., Miiller, H., Jones, G. J. F., Kluck, M., Magnini, B., & Rijke,
M. (Eds.), Proceedings of the 6th international conference on Cross-Language Fvalution Forum:
accessing Multilingual Information Repositories (CLEF’05), volume 4022 of Lecture Notes in
Computer Science, (pp. 517-526). Springer-Verlag.

Solovyev, A. (2013). Dependency-Based Algorithms for Answer Validation Task in Russian Ques-
tion Answering. In Proceedings of the 25th International Conference on Language Processing
and Knowledge in the Web (GSCL 20183), (pp. 199-212). Springer-Verlag.

Tanev, H. (2004). Socrates - a Question Answering prototype for Bulgarian. In N. Nikolov (Ed.),
Recent Advances in Natural Language Processing: Selected Papers from RANLP 2003 (pp. 377—
386). John Benjamins.

Toral, A. & Muioz, R. (2006). A proposal to automatically build and maintain gazetteers for
Named Entity Recognition by using Wikipedia. In Proceedings of the 11th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics. Association for Computational
Linguistics.

Toral, A., Mutioz, R., & Monachini, M. (2008). Named Entity WordNet. In Proceedings of the
International Conference on Language Resources and Fvaluation, LREC 2008.

Ceh, I. & Ojstersek, M. (2009). Developing a question answering system for the slovene language.
WSEAS Transactions on Information Science and Applications, 6(9), 1533-1543.

Vetulani, Z. (1988). PROLOG Implementation of an Access in Polish to a Data Base. In Studia 2
automatyki, XII (pp. 5-23). PWN.

Walas, M. (2012). How to answer yes/no spatial questions using qualitative reasoning? In Gel-
bukh, A. (Ed.), 18th International Conference on Computational Linguistics and Intelligent Text
Processing, (pp. 330-341). Springer-Verlag.

Walas, M. & Jassem, K. (2010). Named entity recognition in a Polish question answering system.
In Intelligent Information Systems, (pp. 181-191). Publishing House of University of Podlasie.
Walas, M. & Jassem, K. (2011). Spatial reasoning and disambiguation in the process of knowledge
acquisition. In Proceedings of the 5th Language € Technology Conference: Human Language
Technologies as a Challenge for Computer Science and Linguistics, (pp. 420-424). Fundacja

Uniwersytetu im. Adama Mickiewicza.

Woliriski, M. (2006). Morfeusz — a Practical Tool for the Morphological Analysis of Polish. In
M. Klopotek, S. Wierzchoni, & K. Trojanowski (Eds.), Intelligent Information Processing and
Web Mining (pp. 511-520). Springer-Verlag.

Yih, W.-t., Chang, M.-w., Meek, C., & Pastusiak, A. (2013). Question Answering Using Enhanced
Lexical Semantic Models. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, (pp. 1744-1753). Association for Computational Linguistics.

	Boosting Question Answering by Deep Entity Recognition

