| import numpy as np | |
| import polars as pl | |
| from yambda.processing.timesplit import flat_split_train_val_test, sequential_split_train_val_test | |
| def create_dataframe(n: int = 1000) -> pl.DataFrame: | |
| uids = np.random.randint(1, int(n * 0.05), size=n) | |
| item_ids = np.random.randint(100, 200, size=n) | |
| timestamps = np.random.randint(0, 100_000, size=n) | |
| is_organic = np.random.choice([True, False], size=n) | |
| df = pl.DataFrame( | |
| {"uid": uids, "item_id": item_ids, "timestamp": timestamps, "is_organic": is_organic}, | |
| schema={"uid": pl.UInt32, "item_id": pl.UInt32, "timestamp": pl.UInt32, "is_organic": pl.UInt8}, | |
| ) | |
| df = df.sort(["uid", "timestamp"]) | |
| return df | |
| def test_cross_check(): | |
| df = create_dataframe(10000) | |
| q75_timestamp = int(df["timestamp"].quantile(0.75)) | |
| print(q75_timestamp) | |
| flat_train, flat_val, flat_test = flat_split_train_val_test( | |
| df.lazy(), test_timestamp=q75_timestamp, gap_size=1000, val_size=1000 | |
| ) | |
| assert flat_val is not None | |
| df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy() | |
| seq_train, seq_val, seq_test = sequential_split_train_val_test( | |
| df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy(), | |
| test_timestamp=q75_timestamp, | |
| gap_size=1000, | |
| val_size=1000, | |
| ) | |
| assert seq_val is not None | |
| assert seq_train.explode(pl.all().exclude("uid")).collect().equals(flat_train.collect()) | |
| assert seq_val.explode(pl.all().exclude("uid")).collect().equals(flat_val.collect()) | |
| assert seq_test.explode(pl.all().exclude("uid")).collect().equals(flat_test.collect()) | |