# DC-AE-Lite \[[github](https://github.com/dc-ai-projects/DC-Gen/tree/main)\] Decoding is often the speed bottleneck in few-step latent diffusion models. We release DC-AE-Lite to resolve this problem. It has the same encoder of DC-AE-f32c32-SANA-1.0 while having a much smaller decoder. Without training, it can be applied to diffusion model trained with DC-AE-f32c32-SANA-1.0. ## Demo


DC-AE-Lite vs DC-AE reconstruction visual quality


DC-AE-Lite achieves 1.8× faster decoding than DC-AE with similar reconstruction quality

# Usage ```bash from diffusers import AutoencoderDC from PIL import Image import torch import torchvision.transforms as transforms from torchvision.utils import save_image device = torch.device("cuda") dc_ae_lite = AutoencoderDC.from_pretrained("dc-ai/dc-ae-lite-f32c32-diffusers").to(device).eval() transform = transforms.Compose([ transforms.CenterCrop((1024,1024)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) image = Image.open("assets/fig/girl.png") x = transform(image)[None].to(device) latent = dc_ae_lite.encode(x).latent print(f"latent shape: {latent.shape}") y = dc_ae_lite.decode(latent).sample save_image(y * 0.5 + 0.5, "demo_dc_ae_lite.png") ```