detorcla commited on
Commit
06a2cf1
·
verified ·
1 Parent(s): 5ebdc45

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - image-classification
7
+ - cifar10
8
+ - computer-vision
9
+ - vision-transformer
10
+ - transfer-learning
11
+ metrics:
12
+ - accuracy
13
+ model-index:
14
+ - name: vit-base-cifar10-augmented
15
+ results:
16
+ - task:
17
+ type: image-classification
18
+ name: Image Classification
19
+ dataset:
20
+ name: CIFAR-10
21
+ type: cifar10
22
+ metrics:
23
+ - type: accuracy
24
+ value: 0.9554
25
+ ---
26
+
27
+ # vit-base-cifar10-augmented
28
+
29
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) using data augmentation.
30
+
31
+ It achieves the following results on the evaluation set:
32
+ - **Loss:** 0.0445
33
+ - **Accuracy:** 95.54%
34
+
35
+ ## 🧠 Model Description
36
+
37
+ The base model is a Vision Transformer (ViT) originally trained on ImageNet-21k. This version has been fine-tuned on CIFAR-10, a standard image classification benchmark, using PyTorch and Hugging Face Transformers.
38
+
39
+ Training was done using extensive **data augmentation**, including random crops, flips, rotations, and color jitter to improve generalization on small input images (32×32, resized to 224×224).
40
+
41
+ ## ✅ Intended Uses & Limitations
42
+
43
+ ### Intended uses
44
+ - Educational and research use on small image classification tasks
45
+ - Benchmarking transfer learning for ViT on CIFAR-10
46
+ - Demonstrating the impact of data augmentation on fine-tuning performance
47
+
48
+ ### Limitations
49
+ - Not optimized for real-time inference
50
+ - Fine-tuned only on CIFAR-10; not suitable for general-purpose image classification
51
+ - Requires resized input (224×224)
52
+
53
+ ## 📦 Training and Evaluation Data
54
+
55
+ - **Dataset**: [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
56
+ - **Size**: 60,000 images (10 classes)
57
+ - **Split**: 75% training, 25% test
58
+
59
+ All images were resized to 224×224 and normalized using ViT’s original mean/std values.
60
+
61
+ ## ⚙️ Training Procedure
62
+
63
+ ### Hyperparameters
64
+
65
+ - Learning rate: `1e-4`
66
+ - Optimizer: `Adam`
67
+ - Batch size: `8`
68
+ - Epochs: `10`
69
+ - Scheduler: `ReduceLROnPlateau`
70
+
71
+ ### Data Augmentation Used
72
+ - `RandomResizedCrop(224)`
73
+ - `RandomHorizontalFlip()`
74
+ - `RandomRotation(10)`
75
+ - `ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1)`
76
+
77
+ ### Training Results
78
+
79
+ | Epoch | Training Loss | Test Accuracy |
80
+ |-------|---------------|---------------|
81
+ | 1 | 0.1969 | 94.62% |
82
+ | 2 | 0.1189 | 95.05% |
83
+ | 3 | 0.0899 | **95.54%** |
84
+ | 4 | 0.0720 | 94.68% |
85
+ | 5 | 0.0650 | 94.84% |
86
+ | 6 | 0.0576 | 94.76% |
87
+ | 7 | 0.0560 | 95.33% |
88
+ | 8 | 0.0488 | 94.31% |
89
+ | 9 | 0.0499 | 95.42% |
90
+ | 10 | 0.0445 | 94.33% |
91
+
92
+ ## 🧪 Framework Versions
93
+
94
+ - `transformers`: 4.50.0
95
+ - `torch`: 2.6.0+cu124
96
+ - `datasets`: 3.4.1
97
+ - `tokenizers`: 0.21.1