dev7halo commited on
Commit
329a6a8
·
verified ·
1 Parent(s): 63bf4eb

Upload HyperCLOVAXForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HyperCLOVAXForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_multiplier": 0.0078125,
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
11
+ "AutoModel": "naver-hyperclovax/HyperCLOVAX-SEED-Think-14B--modeling_hyperclovax.HyperCLOVAXModel",
12
+ "AutoModelForCausalLM": "naver-hyperclovax/HyperCLOVAX-SEED-Think-14B--modeling_hyperclovax.HyperCLOVAXForCausalLM"
13
+ },
14
+ "bos_token_id": 100257,
15
+ "embd_pdrop": 0.0,
16
+ "embedding_multiplier": 10.0,
17
+ "end_token_id": 100257,
18
+ "eos_token_id": 100257,
19
+ "head_dim": 128,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 6144,
22
+ "initializer_range": 0.012727922061357854,
23
+ "intermediate_size": 14336,
24
+ "logits_scaling": 0.125,
25
+ "max_position_embeddings": 131072,
26
+ "mlp_bias": false,
27
+ "model_type": "hyperclovax",
28
+ "num_attention_heads": 48,
29
+ "num_hidden_layers": 38,
30
+ "num_key_value_heads": 8,
31
+ "pad_token_id": 100257,
32
+ "pretraining_tp": 1,
33
+ "quantization_config": {
34
+ "backend": "auto",
35
+ "batch_size": 1,
36
+ "bits": 4,
37
+ "block_name_to_quantize": null,
38
+ "cache_block_outputs": true,
39
+ "checkpoint_format": "gptq",
40
+ "damp_percent": 0.01,
41
+ "dataset": null,
42
+ "desc_act": false,
43
+ "exllama_config": {
44
+ "version": 1
45
+ },
46
+ "group_size": 128,
47
+ "max_input_length": null,
48
+ "meta": null,
49
+ "model_seqlen": null,
50
+ "module_name_preceding_first_block": null,
51
+ "modules_in_block_to_quantize": null,
52
+ "pad_token_id": null,
53
+ "quant_method": "gptq",
54
+ "sym": true,
55
+ "tokenizer": null,
56
+ "true_sequential": false,
57
+ "use_cuda_fp16": false,
58
+ "use_exllama": true
59
+ },
60
+ "resid_pdrop": 0.0,
61
+ "residual_multiplier": 1.0,
62
+ "rms_norm_eps": 1e-05,
63
+ "rope_scaling": null,
64
+ "rope_theta": 100000000,
65
+ "summary_first_dropout": 0.0,
66
+ "tie_word_embeddings": false,
67
+ "torch_dtype": "bfloat16",
68
+ "transformers_version": "4.52.3",
69
+ "use_cache": false,
70
+ "use_post_norm": true,
71
+ "vocab_size": 110592
72
+ }
configuration_hyperclovax.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # This file was created for the HyperCLOVA X SEED 14B Think architecture.
3
+ # partially copied and modified from https://github.com/huggingface/transformers
4
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
7
+ # and OPT implementations in this library. It has been modified from its
8
+ # original forms to accommodate minor architectural differences compared
9
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ """HyperCLOVAX model configuration"""
23
+
24
+ from transformers.configuration_utils import PretrainedConfig
25
+
26
+ class HyperCLOVAXConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`HyperCLOVAXModel`]. It is used to instantiate an HyperCLOVAX
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the HyperCLOVAX.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the HyperCLOVAX model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`HyperCLOVAXModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ pad_token_id (`int`, *optional*):
68
+ Padding token id.
69
+ bos_token_id (`int`, *optional*, defaults to 1):
70
+ Beginning of stream token id.
71
+ eos_token_id (`int`, *optional*, defaults to 2):
72
+ End of stream token id.
73
+ pretraining_tp (`int`, *optional*, defaults to 1):
74
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
75
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
76
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
77
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ rope_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
84
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
85
+ accordingly.
86
+ Expected contents:
87
+ `rope_type` (`str`):
88
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
89
+ 'llama3'], with 'default' being the original RoPE implementation.
90
+ `factor` (`float`, *optional*):
91
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
92
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
93
+ original maximum pre-trained length.
94
+ `original_max_position_embeddings` (`int`, *optional*):
95
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
96
+ pretraining.
97
+ `attention_factor` (`float`, *optional*):
98
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
99
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
100
+ `factor` field to infer the suggested value.
101
+ `beta_fast` (`float`, *optional*):
102
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
103
+ ramp function. If unspecified, it defaults to 32.
104
+ `beta_slow` (`float`, *optional*):
105
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
106
+ ramp function. If unspecified, it defaults to 1.
107
+ `short_factor` (`List[float]`, *optional*):
108
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
109
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
110
+ size divided by the number of attention heads divided by 2
111
+ `long_factor` (`List[float]`, *optional*):
112
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
113
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
114
+ size divided by the number of attention heads divided by 2
115
+ `low_freq_factor` (`float`, *optional*):
116
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
117
+ `high_freq_factor` (`float`, *optional*):
118
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
119
+ attention_bias (`bool`, *optional*, defaults to `False`):
120
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
121
+ attention_dropout (`float`, *optional*, defaults to 0.0):
122
+ The dropout ratio for the attention probabilities.
123
+ mlp_bias (`bool`, *optional*, defaults to `False`):
124
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
125
+ head_dim (`int`, *optional*):
126
+ The attention head dimension. If None, it will default to hidden_size // num_heads
127
+ embedding_multiplier (`float, *optional*, defaults to `None`):
128
+ Multiplier applied to the embedding weights. If `None`, it is equivalent to `1.0`.
129
+ logits_scaling (`float, *optional*, defaults to `None`):
130
+ Scaling factor for logits. If `None`, it is equivalent to `1.0`.
131
+ attention_multiplier (`float, *optional*, defaults to `None`):
132
+ Multiplier applied to the attention weights. If `None`, it is equivalent to `self.head_dim ** -0.5`.
133
+ residual_multiplier (`float, *optional*, defaults to `None`):
134
+ Scaling factor for residual connections. If `None`, it is equivalent to `1.0`.
135
+ use_post_norm (`bool`, *optional*, defaults to `False`):
136
+ Determines whether to apply Peri-Layer Normalization. Set to True to enable this feature.
137
+
138
+ ```python
139
+ >>> from transformers import HyperCLOVAXModel, HyperCLOVAXConfig
140
+
141
+ >>> # Initializing a HyperCLOVAX HyperCLOVAX style configuration
142
+ >>> configuration = HyperCLOVAXConfig()
143
+
144
+ >>> # Initializing a model from the HyperCLOVAX style configuration
145
+ >>> model = HyperCLOVAXModel(configuration)
146
+
147
+ >>> # Accessing the model configuration
148
+ >>> configuration = model.config
149
+ ```"""
150
+
151
+ model_type = "hyperclovax"
152
+ keys_to_ignore_at_inference = ["past_key_values"]
153
+
154
+ def __init__(
155
+ self,
156
+ vocab_size=32000,
157
+ hidden_size=4096,
158
+ intermediate_size=11008,
159
+ num_hidden_layers=32,
160
+ num_attention_heads=32,
161
+ num_key_value_heads=None,
162
+ hidden_act="silu",
163
+ max_position_embeddings=2048,
164
+ initializer_range=0.02,
165
+ rms_norm_eps=1e-6,
166
+ use_cache=True,
167
+ pad_token_id=None,
168
+ bos_token_id=1,
169
+ eos_token_id=2,
170
+ pretraining_tp=1,
171
+ tie_word_embeddings=False,
172
+ rope_theta=10000.0,
173
+ rope_scaling=None,
174
+ attention_bias=False,
175
+ attention_dropout=0.0,
176
+ mlp_bias=False,
177
+ head_dim=None,
178
+ embedding_multiplier=None, # MuP
179
+ logits_scaling=None, # MuP
180
+ attention_multiplier=None, # MuP
181
+ residual_multiplier=None, # MuP
182
+ use_post_norm=False, # Peri-LN (post-norm)
183
+ auto_map={
184
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
185
+ "AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
186
+ "AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
187
+ },
188
+ **kwargs,
189
+ ):
190
+ self.vocab_size = vocab_size
191
+ self.max_position_embeddings = max_position_embeddings
192
+ self.hidden_size = hidden_size
193
+ self.intermediate_size = intermediate_size
194
+ self.num_hidden_layers = num_hidden_layers
195
+ self.num_attention_heads = num_attention_heads
196
+
197
+ # for backward compatibility
198
+ if num_key_value_heads is None:
199
+ num_key_value_heads = num_attention_heads
200
+
201
+ self.num_key_value_heads = num_key_value_heads
202
+ self.hidden_act = hidden_act
203
+ self.initializer_range = initializer_range
204
+ self.rms_norm_eps = rms_norm_eps
205
+ self.pretraining_tp = pretraining_tp
206
+ self.use_cache = use_cache
207
+ self.rope_theta = rope_theta
208
+ self.rope_scaling = rope_scaling
209
+ self.attention_bias = attention_bias
210
+ self.attention_dropout = attention_dropout
211
+ self.mlp_bias = mlp_bias
212
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
213
+ # Validate the correctness of rotary position embeddings parameters
214
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
215
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
216
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
217
+ # rope_config_validation(self)
218
+
219
+ # MuP
220
+ self.embedding_multiplier = embedding_multiplier if embedding_multiplier is not None else 1.0
221
+ self.logits_scaling = logits_scaling if logits_scaling is not None else 1.0
222
+ self.attention_multiplier = attention_multiplier if attention_multiplier is not None else self.head_dim ** -0.5
223
+ self.residual_multiplier = residual_multiplier if residual_multiplier is not None else 1.0
224
+
225
+ # Peri-LN (post-norm)
226
+ self.use_post_norm = use_post_norm
227
+
228
+ super().__init__(
229
+ pad_token_id=pad_token_id,
230
+ bos_token_id=bos_token_id,
231
+ eos_token_id=eos_token_id,
232
+ tie_word_embeddings=tie_word_embeddings,
233
+ auto_map=auto_map,
234
+ **kwargs,
235
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": 100257,
5
+ "pad_token_id": 100257,
6
+ "transformers_version": "4.52.3",
7
+ "use_cache": false
8
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3afed9be25612fd7356ad3846b6a4e3c5095aad115c349f1eaa26ef3839c4663
3
+ size 4979111328
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab935d2db48a9efcd84250a8a49071a84c6754bdd2d507a92455db6b059506b2
3
+ size 4704195032
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff