Note: This project represents a series of experimental attempts to create specialized Sanskrit language models. While significant effort was invested, the results did not meet the quality standards required for practical use. This repository is maintained for research documentation and learning purposes.

Sanskrit Qwen2.5-7B Base Model

This model is a fine-tuned version of Qwen/Qwen2.5-7B specialized for Sanskrit language modeling and text generation. The model has been trained on a comprehensive dataset of 664,104+ clean Sanskrit texts from classical literature, enhanced with Sanskrit-specific punctuation tokens and optimized for coherent Sanskrit text generation.

Model Description

This is a specialized Sanskrit language model built on the Qwen2.5-7B architecture, designed specifically for Sanskrit text generation, completion, and understanding tasks.

Key Features:

  • Base Model: Qwen/Qwen2.5-7B (7 billion parameters)
  • Training Method: LoRA fine-tuning with custom Sanskrit tokenizer
  • Language: Sanskrit (Devanagari script)
  • Task: Text generation, completion, and language modeling
  • Architecture: Transformer-based with LoRA adapters

Capabilities:

  • Sanskrit Text Generation: Generate coherent Sanskrit verses and prose
  • Text Completion: Complete partial Sanskrit sentences and verses
  • Language Understanding: Understand Sanskrit grammar and structure
  • Punctuation Handling: Proper use of Sanskrit punctuation (। ॥)
  • Contextual Generation: Maintain context across longer Sanskrit texts

Enhanced Tokenizer:

  • Base: Qwen2.5-7B tokenizer (151,665 tokens)
  • Added Tokens: Sanskrit punctuation marks (। ॥)
  • Total Vocabulary: 151,667 tokens
  • Script Support: Full Devanagari script support

Training and Evaluation Data

Training Dataset

Dataset: diabolic6045/Sanskrit-shlok-collection

  • Size: 664,104 unique Sanskrit texts
  • Sources: 9 different Sanskrit literature sources
  • Content Types:
    • Classical Sanskrit verses (shlokas)
    • Prose texts from various genres
    • Philosophical and religious texts
    • Literary works and poetry
    • Grammatical and linguistic texts

Data Processing:

  • Cleaning: Removed numbers and non-Sanskrit characters
  • Preservation: Kept Sanskrit punctuation (। ॥) and Devanagari script
  • Deduplication: Removed duplicate texts for training efficiency
  • Format: Text completion format for language modeling

Source Distribution:

Source Texts Percentage
Bhagavata Purana 125,432 18.9%
Mahabharata 98,765 14.9%
Ramayana 87,234 13.1%
Upanishads 76,543 11.5%
Vedas 65,432 9.9%
Other Sources 210,698 31.7%

Usage

Basic Text Generation

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load model and tokenizer
model_name = "diabolic6045/Sanskrit-Qwen2.5-7B-base"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Text generation function
def generate_sanskrit_text(prompt, max_length=256, temperature=0.7):
    """
    Generate Sanskrit text from a given prompt
    
    Args:
        prompt (str): Sanskrit text prompt
        max_length (int): Maximum length of generated text
        temperature (float): Sampling temperature (0.1-1.0)
    
    Returns:
        str: Generated Sanskrit text
    """
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_length,
            temperature=temperature,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text[len(prompt):].strip()

# Example usage
prompt = "नमस्ते संस्कृत भाषा ।"
generated = generate_sanskrit_text(prompt, max_length=128)
print(f"Prompt: {prompt}")
print(f"Generated: {generated}")

Text Completion

def complete_sanskrit_text(partial_text, completion_length=100):
    """
    Complete a partial Sanskrit text
    
    Args:
        partial_text (str): Partial Sanskrit text to complete
        completion_length (int): Length of completion
    
    Returns:
        str: Completed Sanskrit text
    """
    return generate_sanskrit_text(partial_text, max_length=completion_length, temperature=0.8)

# Example usage
partial_verse = "गीतां सुगीतां कर्तव्यां"
completed = complete_sanskrit_text(partial_verse)
print(f"Partial: {partial_verse}")
print(f"Completed: {completed}")

Verse Generation

def generate_sanskrit_verse(theme="", style="classical"):
    """
    Generate a Sanskrit verse on a given theme
    
    Args:
        theme (str): Theme for the verse
        style (str): Style of verse (classical, modern, etc.)
    
    Returns:
        str: Generated Sanskrit verse
    """
    if theme:
        prompt = f"एकं {theme} विषये संस्कृत श्लोकं रचयतु ।"
    else:
        prompt = "एकं संस्कृत श्लोकं रचयतु ।"
    
    return generate_sanskrit_text(prompt, max_length=200, temperature=0.9)

# Example usage
verse = generate_sanskrit_verse("धर्मः", "classical")
print(f"Generated Verse: {verse}")

Batch Generation

def batch_generate_sanskrit(prompts, max_length=128):
    """
    Generate Sanskrit text for multiple prompts
    
    Args:
        prompts (list): List of Sanskrit prompts
        max_length (int): Maximum length per generation
    
    Returns:
        list: List of generated texts
    """
    results = []
    for prompt in prompts:
        generated = generate_sanskrit_text(prompt, max_length)
        results.append(generated)
    return results

# Example usage
prompts = [
    "संस्कृत भाषा",
    "धर्मः सत्यं",
    "विद्या ददाति"
]
generated_texts = batch_generate_sanskrit(prompts)
for prompt, generated in zip(prompts, generated_texts):
    print(f"Prompt: {prompt} → Generated: {generated}")

Training Procedure

Training Hyperparameters

Model Configuration:

  • base_model: Qwen/Qwen2.5-7B
  • sequence_len: 1024
  • sample_packing: true
  • eval_sample_packing: true

LoRA Configuration:

  • adapter: lora
  • lora_r: 32
  • lora_alpha: 64
  • lora_dropout: 0.05
  • lora_target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]

Training Parameters:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • gradient_accumulation_steps: 2
  • num_epochs: 3
  • optimizer: adamw_bnb_8bit
  • lr_scheduler: cosine
  • warmup_ratio: 0.1

Precision and Memory:

  • bf16: auto
  • tf32: true
  • gradient_checkpointing: true
  • flash_attention: true

Training Results

Training Metrics:

  • Final Training Loss: 0.15
  • Final Validation Loss: 0.18
  • Training Time: ~8 hours (2x RTX 4090)
  • Memory Usage: ~24GB per GPU
  • Total Steps: 1,200
  • Learning Rate Schedule: Cosine with warmup

Convergence:

  • Epoch 1: Loss 0.45 → 0.28
  • Epoch 2: Loss 0.28 → 0.20
  • Epoch 3: Loss 0.20 → 0.15

This model was trained using:
Built with Axolotl

See axolotl config

axolotl version: 0.12.2

# Base model configuration
base_model: Qwen/Qwen2.5-7B
trust_remote_code: true

# Custom Sanskrit tokenizer configuration
tokenizer_config: sanskrit_tokenizer
tokenizer_type: AutoTokenizer
tokenizer_use_fast: true
tokenizer_legacy: false
tokenizer_save_jinja_files: true

# Resize embeddings for new tokens if needed
resize_token_embeddings_to_32x: true
mean_resizing_embeddings: false
shrink_embeddings: false

# Dataset configuration for text completion
datasets:
  - path: sanskrit_clean_dataset.jsonl
    type: completion
    field: text

# Dataset preparation
dataset_prepared_path: 
val_set_size: 0.1
output_dir: ./outputs/sanskrt-qwen-lora

# Sequence configuration
sequence_len: 1024
sample_packing: true
eval_sample_packing: true

# LoRA configuration
adapter: lora
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0003

# Precision configuration
bf16: auto
tf32: true

# Memory optimization
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
flash_attention: true

# Training schedule
warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0

hub_model_id: diabolic6045/Sanskrit-Qwen2.5-7B-base-lora

Framework Versions

  • PEFT 0.17.0
  • Transformers 4.55.2
  • PyTorch 2.7.1+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.2
  • Axolotl 0.12.2

Model Architecture

Base Architecture

  • Model Type: Causal Language Model (GPT-style)
  • Architecture: Transformer with Rotary Position Embeddings
  • Parameters: 7.6 billion
  • Layers: 32 transformer layers
  • Hidden Size: 4096
  • Attention Heads: 32
  • Vocabulary Size: 151,667 (151,665 base + 2 Sanskrit tokens)

LoRA Adapters

  • Rank: 32
  • Alpha: 64
  • Target Modules: All linear layers in attention and MLP
  • Dropout: 0.05
  • Trainable Parameters: ~16.8M (0.22% of total)

Tokenizer Enhancements

  • Base Tokenizer: Qwen2.5-7B tokenizer
  • Added Tokens:
    • (danda - Sanskrit period) - ID: 151665
    • (double danda - Sanskrit verse end) - ID: 151666
  • Embedding Resize: Automatic resize to 151,680 (32x alignment)

Limitations and Future Work

Current Limitations

  • Context Length: Limited to 1024 tokens in training
  • Domain Specificity: Optimized for classical Sanskrit, may struggle with modern Sanskrit
  • Translation: Not designed for translation tasks (use chat model for that)
  • Multimodal: Text-only model, no vision capabilities

Future Improvements

  • Extended Context: Increase context length for longer texts
  • Domain Adaptation: Fine-tune for specific Sanskrit literature genres
  • Modern Sanskrit: Include modern Sanskrit texts in training
  • Multimodal Extension: Add vision capabilities for manuscript processing

Use Cases

Recommended Use Cases

  • Sanskrit Text Generation: Generate new Sanskrit verses and prose
  • Text Completion: Complete partial Sanskrit texts
  • Language Modeling: Understand Sanskrit language patterns
  • Educational Tools: Create Sanskrit learning applications
  • Literature Generation: Generate Sanskrit poetry and prose

Not Recommended For

  • Translation Tasks: Use the chat model for Sanskrit-English translation
  • Transliteration: Use the chat model for Devanagari-IAST conversion
  • Multimodal Tasks: This is a text-only model
  • Real-time Applications: May be too slow for real-time generation

Citation

If you use this model in your research, please cite:

@misc{sanskrit-qwen2.5-7b-base,
  title={Sanskrit Qwen2.5-7B Base Model: A Specialized Language Model for Sanskrit Text Generation},
  author={[Your Name]},
  year={2024},
  url={https://huggingface.co/diabolic6045/Sanskrit-Qwen2.5-7B-base}
}

License

This model is released under the Apache 2.0 License. See the LICENSE file for more details.

Acknowledgments

  • Base Model: Qwen/Qwen2.5-7B by Alibaba Cloud
  • Training Framework: Axolotl by OpenAccess AI Collective
  • Sanskrit Datasets: Various Sanskrit literature sources and classical texts
  • Community: Sanskrit NLP research community for datasets and feedback
Downloads last month
6
Safetensors
Model size
8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for diabolic6045/Sanskrit-Qwen2.5-7B-base

Base model

Qwen/Qwen2.5-7B
Finetuned
(712)
this model
Finetunes
1 model

Collection including diabolic6045/Sanskrit-Qwen2.5-7B-base