diogopaes10 commited on
Commit
a03beea
·
1 Parent(s): 8e6bfcc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: 014-microsoft-deberta-v3-base-finetuned-yahoo-80_20
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 014-microsoft-deberta-v3-base-finetuned-yahoo-80_20
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 3.3983
24
+ - F1: 0.2344
25
+ - Accuracy: 0.3
26
+ - Precision: 0.2369
27
+ - Recall: 0.3
28
+ - System Ram Used: 4.9456
29
+ - System Ram Total: 83.4807
30
+ - Gpu Ram Allocated: 4.8430
31
+ - Gpu Ram Cached: 7.0469
32
+ - Gpu Ram Total: 39.5640
33
+ - Gpu Utilization: 11
34
+ - Disk Space Used: 40.4033
35
+ - Disk Space Total: 78.1898
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 50
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
66
+ | 2.311 | 2.5 | 25 | 2.3033 | 0.0857 | 0.15 | 0.1105 | 0.15 | 5.0008 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 40 | 36.2797 | 78.1898 |
67
+ | 2.2703 | 5.0 | 50 | 2.3011 | 0.0686 | 0.2 | 0.0417 | 0.2 | 5.0121 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 38 | 36.2797 | 78.1898 |
68
+ | 2.0062 | 7.5 | 75 | 2.2817 | 0.0794 | 0.15 | 0.0543 | 0.15 | 4.9856 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 42 | 36.2797 | 78.1898 |
69
+ | 1.49 | 10.0 | 100 | 2.3281 | 0.1178 | 0.2 | 0.0869 | 0.2 | 4.9824 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 37 | 36.2797 | 78.1898 |
70
+ | 0.9424 | 12.5 | 125 | 2.3475 | 0.1733 | 0.25 | 0.1417 | 0.25 | 4.9446 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 42 | 36.2798 | 78.1898 |
71
+ | 0.5591 | 15.0 | 150 | 2.4503 | 0.1744 | 0.25 | 0.1452 | 0.25 | 4.9201 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 29 | 36.2798 | 78.1898 |
72
+ | 0.2893 | 17.5 | 175 | 2.5557 | 0.1744 | 0.25 | 0.1452 | 0.25 | 4.9618 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 43 | 36.2798 | 78.1898 |
73
+ | 0.1623 | 20.0 | 200 | 2.6218 | 0.2411 | 0.3 | 0.2452 | 0.3 | 4.9110 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 30 | 36.2799 | 78.1898 |
74
+ | 0.0817 | 22.5 | 225 | 2.7346 | 0.24 | 0.3 | 0.2417 | 0.3 | 4.9413 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 38 | 36.2799 | 78.1898 |
75
+ | 0.0475 | 25.0 | 250 | 2.9325 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9314 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 40 | 36.2800 | 78.1898 |
76
+ | 0.0322 | 27.5 | 275 | 3.1235 | 0.2511 | 0.3 | 0.2869 | 0.3 | 4.9336 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 42 | 36.2800 | 78.1898 |
77
+ | 0.0254 | 30.0 | 300 | 3.1455 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9387 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 30 | 36.2800 | 78.1898 |
78
+ | 0.0195 | 32.5 | 325 | 3.2767 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9198 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 38 | 36.2801 | 78.1898 |
79
+ | 0.0163 | 35.0 | 350 | 3.3281 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9709 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 42 | 40.4031 | 78.1898 |
80
+ | 0.015 | 37.5 | 375 | 3.3318 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9642 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 41 | 40.4032 | 78.1898 |
81
+ | 0.0133 | 40.0 | 400 | 3.3617 | 0.2511 | 0.3 | 0.2869 | 0.3 | 4.9608 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 37 | 40.4032 | 78.1898 |
82
+ | 0.0127 | 42.5 | 425 | 3.3788 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9617 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 39 | 40.4032 | 78.1898 |
83
+ | 0.0129 | 45.0 | 450 | 3.3928 | 0.2511 | 0.3 | 0.2869 | 0.3 | 4.9576 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 41 | 40.4032 | 78.1898 |
84
+ | 0.0121 | 47.5 | 475 | 3.3897 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9421 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 37 | 40.4033 | 78.1898 |
85
+ | 0.0124 | 50.0 | 500 | 3.3983 | 0.2344 | 0.3 | 0.2369 | 0.3 | 4.9581 | 83.4807 | 4.8431 | 7.0469 | 39.5640 | 38 | 40.4033 | 78.1898 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.13.1
93
+ - Tokenizers 0.13.3