index out of bounds 2048 @ dequantize()
Browse files- audiocraft/audiogen.py +2 -14
- audiocraft/codebooks_patterns.py +118 -91
- audiocraft/genmodel.py +5 -16
- audiocraft/lm.py +37 -20
- audiocraft/vq.py +2 -0
audiocraft/audiogen.py
CHANGED
|
@@ -12,24 +12,12 @@ and provide easy access to the generation API.
|
|
| 12 |
import typing as tp
|
| 13 |
import torch
|
| 14 |
|
| 15 |
-
from audiocraft.encodec import CompressionModel
|
| 16 |
from audiocraft.genmodel import BaseGenModel
|
| 17 |
-
from audiocraft.lm import LMModel
|
| 18 |
from audiocraft.loaders import load_compression_model, load_lm_model
|
| 19 |
|
| 20 |
class AudioGen(BaseGenModel):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
name (str): name of the model.
|
| 25 |
-
compression_model (CompressionModel): Compression model
|
| 26 |
-
used to map audio to invertible discrete representations.
|
| 27 |
-
lm (LMModel): Language model over discrete representations.
|
| 28 |
-
max_duration (float, optional): maximum duration the model can produce,
|
| 29 |
-
otherwise, inferred from the training params.
|
| 30 |
-
"""
|
| 31 |
-
def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel,
|
| 32 |
-
max_duration: tp.Optional[float] = None):
|
| 33 |
# print(f'Using {compression_model=}\n-----=-----')
|
| 34 |
super().__init__(name, compression_model, lm, max_duration)
|
| 35 |
self.set_generation_params(duration=5) # default duration
|
|
|
|
| 12 |
import typing as tp
|
| 13 |
import torch
|
| 14 |
|
|
|
|
| 15 |
from audiocraft.genmodel import BaseGenModel
|
|
|
|
| 16 |
from audiocraft.loaders import load_compression_model, load_lm_model
|
| 17 |
|
| 18 |
class AudioGen(BaseGenModel):
|
| 19 |
+
|
| 20 |
+
def __init__(self, name, compression_model, lm, max_duration=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# print(f'Using {compression_model=}\n-----=-----')
|
| 22 |
super().__init__(name, compression_model, lm, max_duration)
|
| 23 |
self.set_generation_params(duration=5) # default duration
|
audiocraft/codebooks_patterns.py
CHANGED
|
@@ -6,11 +6,9 @@
|
|
| 6 |
|
| 7 |
from collections import namedtuple
|
| 8 |
from dataclasses import dataclass
|
| 9 |
-
|
| 10 |
import logging
|
| 11 |
import typing as tp
|
| 12 |
-
|
| 13 |
-
from abc import ABC, abstractmethod
|
| 14 |
import torch
|
| 15 |
|
| 16 |
LayoutCoord = namedtuple('LayoutCoord', ['t', 'q']) # (timestep, codebook index)
|
|
@@ -50,8 +48,8 @@ class Pattern:
|
|
| 50 |
def __post_init__(self):
|
| 51 |
assert len(self.layout) > 0
|
| 52 |
self._validate_layout()
|
| 53 |
-
self._build_reverted_sequence_scatter_indexes =
|
| 54 |
-
self._build_pattern_sequence_scatter_indexes =
|
| 55 |
print("New pattern, time steps: %d, sequence steps: %d", self.timesteps, len(self.layout))
|
| 56 |
|
| 57 |
def _validate_layout(self):
|
|
@@ -74,6 +72,53 @@ class Pattern:
|
|
| 74 |
# each sequence step contains at max 1 coordinate per codebook
|
| 75 |
assert len(qs) == len(seq_coords), \
|
| 76 |
f"Multiple entries for a same codebook are found at step {s}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
@property
|
| 79 |
def num_sequence_steps(self):
|
|
@@ -151,22 +196,10 @@ class Pattern:
|
|
| 151 |
mask = torch.from_numpy(mask).to(device)
|
| 152 |
return indexes, mask
|
| 153 |
|
| 154 |
-
def build_pattern_sequence(self,
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
Args:
|
| 160 |
-
z (torch.Tensor): Input tensor of multi-codebooks sequence, of shape [B, K, T].
|
| 161 |
-
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
|
| 162 |
-
keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
|
| 163 |
-
Steps that are beyond valid steps will be replaced by the special_token in that case.
|
| 164 |
-
Returns:
|
| 165 |
-
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, S] with S
|
| 166 |
-
corresponding either to the sequence_steps if provided, otherwise to the length of the pattern.
|
| 167 |
-
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, S].
|
| 168 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, S].
|
| 169 |
-
"""
|
| 170 |
B, K, T = z.shape
|
| 171 |
indexes, mask = self._build_pattern_sequence_scatter_indexes(
|
| 172 |
T, K, keep_only_valid_steps=keep_only_valid_steps, device=str(z.device)
|
|
@@ -176,6 +209,11 @@ class Pattern:
|
|
| 176 |
z = torch.cat([z, torch.zeros_like(z[:, :1]) + special_token], dim=1)
|
| 177 |
values = z[:, indexes.view(-1)]
|
| 178 |
values = values.view(B, K, indexes.shape[-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
return values, indexes, mask
|
| 180 |
|
| 181 |
def _build_reverted_sequence_scatter_indexes(self, sequence_steps: int, n_q: int,
|
|
@@ -216,25 +254,26 @@ class Pattern:
|
|
| 216 |
if s < sequence_steps:
|
| 217 |
for code in sequence_codes:
|
| 218 |
if code.t < timesteps:
|
| 219 |
-
indexes[code.q, code.t] = s + code.q * sequence_steps
|
| 220 |
mask[code.q, code.t] = 1
|
| 221 |
indexes = torch.from_numpy(indexes).to(device)
|
| 222 |
mask = torch.from_numpy(mask).to(device)
|
| 223 |
return indexes, mask
|
| 224 |
|
| 225 |
-
def revert_pattern_sequence(self,
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
| 229 |
|
| 230 |
Args:
|
| 231 |
s (torch.Tensor): Interleaved sequence tensor obtained from the pattern, of shape [B, K, S].
|
| 232 |
special_token (int or float): Special token used to fill non-pattern coordinates in the new sequence.
|
| 233 |
Returns:
|
| 234 |
-
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, T] with T
|
| 235 |
-
corresponding either to the timesteps if provided, or the total timesteps in pattern otherwise.
|
| 236 |
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, T].
|
| 237 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
|
|
|
| 238 |
"""
|
| 239 |
B, K, S = s.shape
|
| 240 |
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
|
@@ -245,64 +284,44 @@ class Pattern:
|
|
| 245 |
s = torch.cat([s, torch.zeros_like(s[:, :1]) + special_token], dim=1)
|
| 246 |
values = s[:, indexes.view(-1)]
|
| 247 |
values = values.view(B, K, indexes.shape[-1])
|
|
|
|
| 248 |
return values, indexes, mask
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
Args:
|
| 286 |
-
n_q (int): number of codebooks.
|
| 287 |
-
cached (bool): if True, patterns for a given length are cached. In general
|
| 288 |
-
that should be true for efficiency reason to avoid synchronization points.
|
| 289 |
-
"""
|
| 290 |
-
def __init__(self, n_q: int, cached: bool = True):
|
| 291 |
-
assert n_q > 0
|
| 292 |
-
self.n_q = n_q
|
| 293 |
-
self.get_pattern = lru_cache(100)(self.get_pattern) # type: ignore
|
| 294 |
-
|
| 295 |
-
@abstractmethod
|
| 296 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
| 297 |
-
"""Builds pattern with specific interleaving between codebooks.
|
| 298 |
-
|
| 299 |
-
Args:
|
| 300 |
-
timesteps (int): Total number of timesteps.
|
| 301 |
-
"""
|
| 302 |
-
raise NotImplementedError()
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
class DelayedPatternProvider(CodebooksPatternProvider):
|
| 306 |
"""Provider for delayed pattern across delayed codebooks.
|
| 307 |
Codebooks are delayed in the sequence and sequence steps will contain codebooks
|
| 308 |
from different timesteps.
|
|
@@ -325,9 +344,12 @@ class DelayedPatternProvider(CodebooksPatternProvider):
|
|
| 325 |
flatten_first (int): Flatten the first N timesteps.
|
| 326 |
empty_initial (int): Prepend with N empty list of coordinates.
|
| 327 |
"""
|
| 328 |
-
def __init__(self,
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
| 331 |
if delays is None:
|
| 332 |
delays = list(range(n_q))
|
| 333 |
self.delays = delays
|
|
@@ -336,8 +358,12 @@ class DelayedPatternProvider(CodebooksPatternProvider):
|
|
| 336 |
assert len(self.delays) == self.n_q
|
| 337 |
assert sorted(self.delays) == self.delays
|
| 338 |
|
| 339 |
-
def get_pattern(self, timesteps
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
out: PatternLayout = [] if omit_special_token else [[]]
|
| 342 |
max_delay = max(self.delays)
|
| 343 |
if self.empty_initial:
|
|
@@ -353,6 +379,7 @@ class DelayedPatternProvider(CodebooksPatternProvider):
|
|
| 353 |
if t_for_q >= self.flatten_first:
|
| 354 |
v.append(LayoutCoord(t_for_q, q))
|
| 355 |
out.append(v)
|
|
|
|
| 356 |
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
| 357 |
|
| 358 |
|
|
|
|
| 6 |
|
| 7 |
from collections import namedtuple
|
| 8 |
from dataclasses import dataclass
|
| 9 |
+
|
| 10 |
import logging
|
| 11 |
import typing as tp
|
|
|
|
|
|
|
| 12 |
import torch
|
| 13 |
|
| 14 |
LayoutCoord = namedtuple('LayoutCoord', ['t', 'q']) # (timestep, codebook index)
|
|
|
|
| 48 |
def __post_init__(self):
|
| 49 |
assert len(self.layout) > 0
|
| 50 |
self._validate_layout()
|
| 51 |
+
self._build_reverted_sequence_scatter_indexes = self._build_reverted_sequence_scatter_indexes
|
| 52 |
+
self._build_pattern_sequence_scatter_indexes = self._build_pattern_sequence_scatter_indexes
|
| 53 |
print("New pattern, time steps: %d, sequence steps: %d", self.timesteps, len(self.layout))
|
| 54 |
|
| 55 |
def _validate_layout(self):
|
|
|
|
| 72 |
# each sequence step contains at max 1 coordinate per codebook
|
| 73 |
assert len(qs) == len(seq_coords), \
|
| 74 |
f"Multiple entries for a same codebook are found at step {s}"
|
| 75 |
+
print(f'{qs=}\n\n\n\n QS VALIDATE LAYOUT') # this prints 0,1,2,3 although
|
| 76 |
+
# if the q_timesteps contains special_index doe sthis show somehting diff than 0123
|
| 77 |
+
# =======================================================
|
| 78 |
+
# QS VALIDATE LAYOUT
|
| 79 |
+
# qs={0, 1}
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# QS VALIDATE LAYOUT
|
| 84 |
+
# qs={0, 1, 2}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# QS VALIDATE LAYOUT
|
| 89 |
+
# qs={0, 1, 2, 3}
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# QS VALIDATE LAYOUT
|
| 94 |
+
# qs={0, 1, 2, 3}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# QS VALIDATE LAYOUT
|
| 99 |
+
# qs={0, 1, 2, 3}
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# QS VALIDATE LAYOUT
|
| 104 |
+
# qs={0, 1, 2, 3}
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# QS VALIDATE LAYOUT
|
| 109 |
+
# qs={0, 1, 2, 3}
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# QS VALIDATE LAYOUT
|
| 114 |
+
# qs={0, 1, 2, 3}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# QS VALIDATE LAYOUT
|
| 119 |
+
# qs={0, 1, 2, 3}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
|
| 123 |
@property
|
| 124 |
def num_sequence_steps(self):
|
|
|
|
| 196 |
mask = torch.from_numpy(mask).to(device)
|
| 197 |
return indexes, mask
|
| 198 |
|
| 199 |
+
def build_pattern_sequence(self,
|
| 200 |
+
z,
|
| 201 |
+
special_token,
|
| 202 |
+
keep_only_valid_steps=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
B, K, T = z.shape
|
| 204 |
indexes, mask = self._build_pattern_sequence_scatter_indexes(
|
| 205 |
T, K, keep_only_valid_steps=keep_only_valid_steps, device=str(z.device)
|
|
|
|
| 209 |
z = torch.cat([z, torch.zeros_like(z[:, :1]) + special_token], dim=1)
|
| 210 |
values = z[:, indexes.view(-1)]
|
| 211 |
values = values.view(B, K, indexes.shape[-1])
|
| 212 |
+
|
| 213 |
+
# print(values.shape, indexes.shape, mask.shape, 'BUILD PATTERN')
|
| 214 |
+
# --
|
| 215 |
+
# torch.Size([1, 4, 39]) torch.Size([4, 39]) torch.Size([4, 39]) BUILD PATTERN
|
| 216 |
+
|
| 217 |
return values, indexes, mask
|
| 218 |
|
| 219 |
def _build_reverted_sequence_scatter_indexes(self, sequence_steps: int, n_q: int,
|
|
|
|
| 254 |
if s < sequence_steps:
|
| 255 |
for code in sequence_codes:
|
| 256 |
if code.t < timesteps:
|
| 257 |
+
indexes[code.q, code.t] = s + code.q * sequence_steps # oh the jump - so are the codes linearised
|
| 258 |
mask[code.q, code.t] = 1
|
| 259 |
indexes = torch.from_numpy(indexes).to(device)
|
| 260 |
mask = torch.from_numpy(mask).to(device)
|
| 261 |
return indexes, mask
|
| 262 |
|
| 263 |
+
def revert_pattern_sequence(self,
|
| 264 |
+
s,
|
| 265 |
+
special_token,
|
| 266 |
+
keep_only_valid_steps=False):
|
| 267 |
+
"""SPECIAL TOKEN NOT DELETED HERE !!!!
|
| 268 |
|
| 269 |
Args:
|
| 270 |
s (torch.Tensor): Interleaved sequence tensor obtained from the pattern, of shape [B, K, S].
|
| 271 |
special_token (int or float): Special token used to fill non-pattern coordinates in the new sequence.
|
| 272 |
Returns:
|
| 273 |
+
values (torch.Tensor) : Interleaved sequence matching the pattern, of shape [B, K, T] with T
|
|
|
|
| 274 |
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, T].
|
| 275 |
+
mask (torch.Tensor) : Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
| 276 |
+
shall this mask delete special token id;
|
| 277 |
"""
|
| 278 |
B, K, S = s.shape
|
| 279 |
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
|
|
|
| 284 |
s = torch.cat([s, torch.zeros_like(s[:, :1]) + special_token], dim=1)
|
| 285 |
values = s[:, indexes.view(-1)]
|
| 286 |
values = values.view(B, K, indexes.shape[-1])
|
| 287 |
+
|
| 288 |
return values, indexes, mask
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
# def revert_pattern_logits(self, logits,
|
| 299 |
+
# special_token,
|
| 300 |
+
# keep_only_valid_steps=False):
|
| 301 |
+
# """similar to ``revert_pattern_sequence`` with the following specificities:
|
| 302 |
+
# 1. It is designed to work with the extra cardinality dimension
|
| 303 |
+
# 2. We return the logits for the first sequence item that matches the special_token and
|
| 304 |
+
# which matching target in the original sequence is the first item of the sequence,
|
| 305 |
+
# while we skip the last logits as there is no matching target
|
| 306 |
+
# """
|
| 307 |
+
# B, card, K, S = logits.shape
|
| 308 |
+
# indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
| 309 |
+
# S, K, keep_only_valid_steps, is_model_output=True, device=logits.device
|
| 310 |
+
# )
|
| 311 |
+
# logits = logits.reshape(B, card, -1)
|
| 312 |
+
# # we append the special token as the last index of our flattened z tensor
|
| 313 |
+
# logits = torch.cat([logits, torch.zeros_like(logits[:, :, :1]) + special_token], dim=-1) # [B, card, K x S]
|
| 314 |
+
# values = logits[:, :, indexes.view(-1)]
|
| 315 |
+
# values = values.view(B, card, K, indexes.shape[-1])
|
| 316 |
+
# return values, indexes, mask
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
class DelayedPatternProvider():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
"""Provider for delayed pattern across delayed codebooks.
|
| 326 |
Codebooks are delayed in the sequence and sequence steps will contain codebooks
|
| 327 |
from different timesteps.
|
|
|
|
| 344 |
flatten_first (int): Flatten the first N timesteps.
|
| 345 |
empty_initial (int): Prepend with N empty list of coordinates.
|
| 346 |
"""
|
| 347 |
+
def __init__(self,
|
| 348 |
+
n_q,
|
| 349 |
+
delays,
|
| 350 |
+
flatten_first=0,
|
| 351 |
+
empty_initial=0):
|
| 352 |
+
self.n_q = n_q
|
| 353 |
if delays is None:
|
| 354 |
delays = list(range(n_q))
|
| 355 |
self.delays = delays
|
|
|
|
| 358 |
assert len(self.delays) == self.n_q
|
| 359 |
assert sorted(self.delays) == self.delays
|
| 360 |
|
| 361 |
+
def get_pattern(self, timesteps):
|
| 362 |
+
# get_pattern for desired length?
|
| 363 |
+
# print(f'{timesteps=} GET_PATTERn') # 35
|
| 364 |
+
# print(f'{self.empty_initial=}')
|
| 365 |
+
omit_special_token = self.empty_initial < 0 # False as initial = 0 unset
|
| 366 |
+
|
| 367 |
out: PatternLayout = [] if omit_special_token else [[]]
|
| 368 |
max_delay = max(self.delays)
|
| 369 |
if self.empty_initial:
|
|
|
|
| 379 |
if t_for_q >= self.flatten_first:
|
| 380 |
v.append(LayoutCoord(t_for_q, q))
|
| 381 |
out.append(v)
|
| 382 |
+
# print(self.n_q, 'N_Q in PATTERN') # 4 N_Q in PATTERN
|
| 383 |
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
| 384 |
|
| 385 |
|
audiocraft/genmodel.py
CHANGED
|
@@ -44,7 +44,7 @@ class BaseGenModel(ABC):
|
|
| 44 |
self.duration = self.max_duration
|
| 45 |
self.device = next(iter(lm.parameters())).device
|
| 46 |
self.generation_params={}
|
| 47 |
-
|
| 48 |
if self.device.type == 'cpu':
|
| 49 |
self.autocast = TorchAutocast(enabled=False)
|
| 50 |
else:
|
|
@@ -68,9 +68,7 @@ class BaseGenModel(ABC):
|
|
| 68 |
"""Audio channels of the generated audio."""
|
| 69 |
return self.compression_model.channels
|
| 70 |
|
| 71 |
-
|
| 72 |
-
"""Override the default progress callback."""
|
| 73 |
-
self._progress_callback = progress_callback
|
| 74 |
|
| 75 |
@abstractmethod
|
| 76 |
def set_generation_params(self, *args, **kwargs):
|
|
@@ -119,25 +117,16 @@ class BaseGenModel(ABC):
|
|
| 119 |
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
|
| 120 |
current_gen_offset: int = 0
|
| 121 |
|
| 122 |
-
|
| 123 |
-
generated_tokens += current_gen_offset
|
| 124 |
-
if self._progress_callback is not None:
|
| 125 |
-
# Note that total_gen_len might be quite wrong depending on the
|
| 126 |
-
# codebook pattern used, but with delay it is almost accurate.
|
| 127 |
-
self._progress_callback(generated_tokens, tokens_to_generate)
|
| 128 |
-
else:
|
| 129 |
-
print(f'{generated_tokens: 6d} / {tokens_to_generate: 6d}', end='\r')
|
| 130 |
|
| 131 |
-
|
| 132 |
-
if progress:
|
| 133 |
-
callback = _progress_callback
|
| 134 |
|
| 135 |
if self.duration <= self.max_duration:
|
| 136 |
# generate by sampling from LM, simple case.
|
| 137 |
|
| 138 |
with self.autocast:
|
| 139 |
gen_tokens = self.lm.generate(conditions=attributes,
|
| 140 |
-
callback=
|
| 141 |
max_gen_len=total_gen_len,
|
| 142 |
**self.generation_params)
|
| 143 |
else:
|
|
|
|
| 44 |
self.duration = self.max_duration
|
| 45 |
self.device = next(iter(lm.parameters())).device
|
| 46 |
self.generation_params={}
|
| 47 |
+
|
| 48 |
if self.device.type == 'cpu':
|
| 49 |
self.autocast = TorchAutocast(enabled=False)
|
| 50 |
else:
|
|
|
|
| 68 |
"""Audio channels of the generated audio."""
|
| 69 |
return self.compression_model.channels
|
| 70 |
|
| 71 |
+
|
|
|
|
|
|
|
| 72 |
|
| 73 |
@abstractmethod
|
| 74 |
def set_generation_params(self, *args, **kwargs):
|
|
|
|
| 117 |
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
|
| 118 |
current_gen_offset: int = 0
|
| 119 |
|
| 120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if self.duration <= self.max_duration:
|
| 125 |
# generate by sampling from LM, simple case.
|
| 126 |
|
| 127 |
with self.autocast:
|
| 128 |
gen_tokens = self.lm.generate(conditions=attributes,
|
| 129 |
+
callback=None,
|
| 130 |
max_gen_len=total_gen_len,
|
| 131 |
**self.generation_params)
|
| 132 |
else:
|
audiocraft/lm.py
CHANGED
|
@@ -373,8 +373,8 @@ class LMModel(StreamingModule):
|
|
| 373 |
|
| 374 |
gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device)
|
| 375 |
|
| 376 |
-
gen_codes[..., :start_offset] = prompt
|
| 377 |
-
|
| 378 |
gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
|
| 379 |
|
| 380 |
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
|
|
@@ -397,26 +397,26 @@ class LMModel(StreamingModule):
|
|
| 397 |
|
| 398 |
curr_sequence = gen_sequence[..., prev_offset:offset]
|
| 399 |
curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1)
|
| 400 |
-
|
| 401 |
-
# check coherence between mask and sequence
|
| 402 |
-
assert (curr_sequence == torch.where(curr_mask, curr_sequence, self.special_token_id)).all()
|
| 403 |
-
# should never happen as gen_sequence is filled progressively
|
| 404 |
-
assert not (curr_sequence == unknown_token).any()
|
| 405 |
-
# sample next token from the model, next token shape is [B, K, 1]
|
| 406 |
next_token = self._sample_next_token(
|
| 407 |
curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p,
|
| 408 |
cfg_coef=cfg_coef, two_step_cfg=two_step_cfg)
|
|
|
|
|
|
|
|
|
|
| 409 |
# ensure the tokens that should be masked are properly set to special_token_id
|
| 410 |
# as the model never output special_token_id
|
| 411 |
-
valid_mask = mask[..., offset:offset+1].expand(B, -1, -1)
|
| 412 |
|
| 413 |
# next_token[~valid_mask] = self.special_token_id
|
| 414 |
|
| 415 |
# print(f'{unconditional_state=} \n
|
| 416 |
# print('Set All to Special')
|
| 417 |
|
| 418 |
-
# RUNS with = 2047 just different of self.special_token_id
|
| 419 |
-
#
|
|
|
|
|
|
|
| 420 |
|
| 421 |
|
| 422 |
|
|
@@ -427,17 +427,34 @@ class LMModel(StreamingModule):
|
|
| 427 |
next_token, gen_sequence[..., offset:offset+1]
|
| 428 |
)
|
| 429 |
prev_offset = offset
|
| 430 |
-
|
| 431 |
-
|
|
|
|
| 432 |
unconditional_state.clear()
|
| 433 |
-
|
|
|
|
|
|
|
| 434 |
out_codes, _, _ = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
|
| 439 |
-
# ensure the returned codes are all valid
|
| 440 |
|
| 441 |
-
# assert (out_codes >= 0).all() and (out_codes <= self.card).all()
|
| 442 |
|
| 443 |
-
return out_codes
|
|
|
|
| 373 |
|
| 374 |
gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device)
|
| 375 |
|
| 376 |
+
gen_codes[..., :start_offset] = prompt # place 0
|
| 377 |
+
|
| 378 |
gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
|
| 379 |
|
| 380 |
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
|
|
|
|
| 397 |
|
| 398 |
curr_sequence = gen_sequence[..., prev_offset:offset]
|
| 399 |
curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1)
|
| 400 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
next_token = self._sample_next_token(
|
| 402 |
curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p,
|
| 403 |
cfg_coef=cfg_coef, two_step_cfg=two_step_cfg)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
|
| 407 |
# ensure the tokens that should be masked are properly set to special_token_id
|
| 408 |
# as the model never output special_token_id
|
| 409 |
+
# valid_mask = mask[..., offset:offset+1].expand(B, -1, -1)
|
| 410 |
|
| 411 |
# next_token[~valid_mask] = self.special_token_id
|
| 412 |
|
| 413 |
# print(f'{unconditional_state=} \n
|
| 414 |
# print('Set All to Special')
|
| 415 |
|
| 416 |
+
# RUNS with = 2047 just different of self.special_token_id = 2047 = drill noise
|
| 417 |
+
# special_token_id is filler for CODEBOOK_PATTERN ?
|
| 418 |
+
|
| 419 |
+
# next_token[:] = self.special_token_id # seanet.embed torch.embedding does not have this - out of bounds in detokenize
|
| 420 |
|
| 421 |
|
| 422 |
|
|
|
|
| 427 |
next_token, gen_sequence[..., offset:offset+1]
|
| 428 |
)
|
| 429 |
prev_offset = offset
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
|
| 433 |
unconditional_state.clear()
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
# revert_pattern_logits ~ NOT CALLED EXPLICIT
|
| 437 |
out_codes, _, _ = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)
|
| 438 |
+
|
| 439 |
+
# set(out_codes.unique().tolist()) - set(gen_sequence.unique().tolist()) # set()
|
| 440 |
+
|
| 441 |
+
# UNIQUE are the SAME ---------------?> is it rearrange
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
# ARE SOME PARTS IGNORED OR RE-ARRANGED
|
| 446 |
+
|
| 447 |
+
# print(f'{unknown_token=} {gen_sequence.shape=} {out_codes.shape=}')
|
| 448 |
+
# -> unknown tokn = -1 or 2048
|
| 449 |
+
# unknown_token=-1
|
| 450 |
+
|
| 451 |
+
# print(f' <=> CODES {out_codes.shape=} {out_codes.min()} {out_codes.max()}\n') # ARRIVES here also if special
|
| 452 |
+
|
| 453 |
+
# unknown_token=-1 gen_sequence.shape=torch.Size([1, 4, 39]) out_codes.shape=torch.Size([1, 4, 35])
|
| 454 |
+
# <=> CODES out_codes.shape=torch.Size([1, 4, 35]) 30 2024
|
| 455 |
+
|
| 456 |
+
|
| 457 |
|
|
|
|
| 458 |
|
|
|
|
| 459 |
|
| 460 |
+
return out_codes # supposedly contains extra prompt
|
audiocraft/vq.py
CHANGED
|
@@ -64,6 +64,8 @@ class EuclideanCodebook(nn.Module):
|
|
| 64 |
return embed_ind.view(*shape[:-1])
|
| 65 |
|
| 66 |
def dequantize(self, embed_ind):
|
|
|
|
|
|
|
| 67 |
quantize = F.embedding(embed_ind, self.embed)
|
| 68 |
# print('\n\nDE QUANT\n\n', quantize.shape) # (1, 35, 128) -> also arrives here for special_token
|
| 69 |
return quantize
|
|
|
|
| 64 |
return embed_ind.view(*shape[:-1])
|
| 65 |
|
| 66 |
def dequantize(self, embed_ind):
|
| 67 |
+
# embed_ind[0] = 2048
|
| 68 |
+
# print('MAX MAX MAX', embed_ind.shape)
|
| 69 |
quantize = F.embedding(embed_ind, self.embed)
|
| 70 |
# print('\n\nDE QUANT\n\n', quantize.shape) # (1, 35, 128) -> also arrives here for special_token
|
| 71 |
return quantize
|