format
Browse files- Modules/diffusion/modules.py +2 -277
- README.md +4 -4
- models.py +2 -4
Modules/diffusion/modules.py
CHANGED
|
@@ -279,207 +279,6 @@ class StyleAttention(nn.Module):
|
|
| 279 |
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 280 |
# Compute and return attention
|
| 281 |
return self.attention(q, k, v)
|
| 282 |
-
|
| 283 |
-
class Transformer1d(nn.Module):
|
| 284 |
-
def __init__(
|
| 285 |
-
self,
|
| 286 |
-
num_layers: int,
|
| 287 |
-
channels: int,
|
| 288 |
-
num_heads: int,
|
| 289 |
-
head_features: int,
|
| 290 |
-
multiplier: int,
|
| 291 |
-
use_context_time: bool = True,
|
| 292 |
-
use_rel_pos: bool = False,
|
| 293 |
-
context_features_multiplier: int = 1,
|
| 294 |
-
rel_pos_num_buckets: Optional[int] = None,
|
| 295 |
-
rel_pos_max_distance: Optional[int] = None,
|
| 296 |
-
context_features: Optional[int] = None,
|
| 297 |
-
context_embedding_features: Optional[int] = None,
|
| 298 |
-
embedding_max_length: int = 512,
|
| 299 |
-
):
|
| 300 |
-
super().__init__()
|
| 301 |
-
|
| 302 |
-
self.blocks = nn.ModuleList(
|
| 303 |
-
[
|
| 304 |
-
TransformerBlock(
|
| 305 |
-
features=channels + context_embedding_features,
|
| 306 |
-
head_features=head_features,
|
| 307 |
-
num_heads=num_heads,
|
| 308 |
-
multiplier=multiplier,
|
| 309 |
-
use_rel_pos=use_rel_pos,
|
| 310 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 311 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
| 312 |
-
)
|
| 313 |
-
for i in range(num_layers)
|
| 314 |
-
]
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
self.to_out = nn.Sequential(
|
| 318 |
-
Rearrange("b t c -> b c t"),
|
| 319 |
-
nn.Conv1d(
|
| 320 |
-
in_channels=channels + context_embedding_features,
|
| 321 |
-
out_channels=channels,
|
| 322 |
-
kernel_size=1,
|
| 323 |
-
),
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
use_context_features = exists(context_features)
|
| 327 |
-
self.use_context_features = use_context_features
|
| 328 |
-
self.use_context_time = use_context_time
|
| 329 |
-
|
| 330 |
-
if use_context_time or use_context_features:
|
| 331 |
-
context_mapping_features = channels + context_embedding_features
|
| 332 |
-
|
| 333 |
-
self.to_mapping = nn.Sequential(
|
| 334 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
| 335 |
-
nn.GELU(),
|
| 336 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
| 337 |
-
nn.GELU(),
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
if use_context_time:
|
| 341 |
-
assert exists(context_mapping_features)
|
| 342 |
-
self.to_time = nn.Sequential(
|
| 343 |
-
TimePositionalEmbedding(
|
| 344 |
-
dim=channels, out_features=context_mapping_features
|
| 345 |
-
),
|
| 346 |
-
nn.GELU(),
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
if use_context_features:
|
| 350 |
-
assert exists(context_features) and exists(context_mapping_features)
|
| 351 |
-
self.to_features = nn.Sequential(
|
| 352 |
-
nn.Linear(
|
| 353 |
-
in_features=context_features, out_features=context_mapping_features
|
| 354 |
-
),
|
| 355 |
-
nn.GELU(),
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
self.fixed_embedding = FixedEmbedding(
|
| 359 |
-
max_length=embedding_max_length, features=context_embedding_features
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
def get_mapping(
|
| 364 |
-
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
| 365 |
-
) -> Optional[Tensor]:
|
| 366 |
-
"""Combines context time features and features into mapping"""
|
| 367 |
-
items, mapping = [], None
|
| 368 |
-
# Compute time features
|
| 369 |
-
if self.use_context_time:
|
| 370 |
-
assert_message = "use_context_time=True but no time features provided"
|
| 371 |
-
assert exists(time), assert_message
|
| 372 |
-
items += [self.to_time(time)]
|
| 373 |
-
# Compute features
|
| 374 |
-
if self.use_context_features:
|
| 375 |
-
assert_message = "context_features exists but no features provided"
|
| 376 |
-
assert exists(features), assert_message
|
| 377 |
-
items += [self.to_features(features)]
|
| 378 |
-
|
| 379 |
-
# Compute joint mapping
|
| 380 |
-
if self.use_context_time or self.use_context_features:
|
| 381 |
-
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
| 382 |
-
mapping = self.to_mapping(mapping)
|
| 383 |
-
|
| 384 |
-
return mapping
|
| 385 |
-
|
| 386 |
-
def run(self, x, time, embedding, features):
|
| 387 |
-
|
| 388 |
-
mapping = self.get_mapping(time, features)
|
| 389 |
-
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
| 390 |
-
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
| 391 |
-
|
| 392 |
-
for block in self.blocks:
|
| 393 |
-
x = x + mapping
|
| 394 |
-
x = block(x)
|
| 395 |
-
|
| 396 |
-
x = x.mean(axis=1).unsqueeze(1)
|
| 397 |
-
x = self.to_out(x)
|
| 398 |
-
x = x.transpose(-1, -2)
|
| 399 |
-
|
| 400 |
-
return x
|
| 401 |
-
|
| 402 |
-
def forward(self, x: Tensor,
|
| 403 |
-
time: Tensor,
|
| 404 |
-
embedding_mask_proba: float = 0.0,
|
| 405 |
-
embedding: Optional[Tensor] = None,
|
| 406 |
-
features: Optional[Tensor] = None,
|
| 407 |
-
embedding_scale: float = 1.0) -> Tensor:
|
| 408 |
-
|
| 409 |
-
b, device = embedding.shape[0], embedding.device
|
| 410 |
-
fixed_embedding = self.fixed_embedding(embedding)
|
| 411 |
-
if embedding_mask_proba > 0.0:
|
| 412 |
-
# Randomly mask embedding
|
| 413 |
-
batch_mask = rand_bool(
|
| 414 |
-
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
| 415 |
-
)
|
| 416 |
-
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
| 417 |
-
|
| 418 |
-
if embedding_scale != 1.0:
|
| 419 |
-
# Compute both normal and fixed embedding outputs
|
| 420 |
-
out = self.run(x, time, embedding=embedding, features=features)
|
| 421 |
-
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
| 422 |
-
# Scale conditional output using classifier-free guidance
|
| 423 |
-
return out_masked + (out - out_masked) * embedding_scale
|
| 424 |
-
else:
|
| 425 |
-
return self.run(x, time, embedding=embedding, features=features)
|
| 426 |
-
|
| 427 |
-
return x
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
"""
|
| 431 |
-
Attention Components
|
| 432 |
-
"""
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
class RelativePositionBias(nn.Module):
|
| 436 |
-
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
| 437 |
-
super().__init__()
|
| 438 |
-
self.num_buckets = num_buckets
|
| 439 |
-
self.max_distance = max_distance
|
| 440 |
-
self.num_heads = num_heads
|
| 441 |
-
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
| 442 |
-
|
| 443 |
-
@staticmethod
|
| 444 |
-
def _relative_position_bucket(
|
| 445 |
-
relative_position: Tensor, num_buckets: int, max_distance: int
|
| 446 |
-
):
|
| 447 |
-
num_buckets //= 2
|
| 448 |
-
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
| 449 |
-
n = torch.abs(relative_position)
|
| 450 |
-
|
| 451 |
-
max_exact = num_buckets // 2
|
| 452 |
-
is_small = n < max_exact
|
| 453 |
-
|
| 454 |
-
val_if_large = (
|
| 455 |
-
max_exact
|
| 456 |
-
+ (
|
| 457 |
-
torch.log(n.float() / max_exact)
|
| 458 |
-
/ log(max_distance / max_exact)
|
| 459 |
-
* (num_buckets - max_exact)
|
| 460 |
-
).long()
|
| 461 |
-
)
|
| 462 |
-
val_if_large = torch.min(
|
| 463 |
-
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
ret += torch.where(is_small, n, val_if_large)
|
| 467 |
-
return ret
|
| 468 |
-
|
| 469 |
-
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
| 470 |
-
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
| 471 |
-
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
| 472 |
-
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
| 473 |
-
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
| 474 |
-
|
| 475 |
-
relative_position_bucket = self._relative_position_bucket(
|
| 476 |
-
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
| 477 |
-
)
|
| 478 |
-
|
| 479 |
-
bias = self.relative_attention_bias(relative_position_bucket)
|
| 480 |
-
bias = rearrange(bias, "m n h -> 1 h m n")
|
| 481 |
-
return bias
|
| 482 |
-
|
| 483 |
|
| 484 |
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
| 485 |
mid_features = features * multiplier
|
|
@@ -509,12 +308,8 @@ class AttentionBase(nn.Module):
|
|
| 509 |
mid_features = head_features * num_heads
|
| 510 |
|
| 511 |
if use_rel_pos:
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
num_buckets=rel_pos_num_buckets,
|
| 515 |
-
max_distance=rel_pos_max_distance,
|
| 516 |
-
num_heads=num_heads,
|
| 517 |
-
)
|
| 518 |
if out_features is None:
|
| 519 |
out_features = features
|
| 520 |
|
|
@@ -584,76 +379,6 @@ class Attention(nn.Module):
|
|
| 584 |
return self.attention(q, k, v)
|
| 585 |
|
| 586 |
|
| 587 |
-
"""
|
| 588 |
-
Transformer Blocks
|
| 589 |
-
"""
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
class TransformerBlock(nn.Module):
|
| 593 |
-
def __init__(
|
| 594 |
-
self,
|
| 595 |
-
features: int,
|
| 596 |
-
num_heads: int,
|
| 597 |
-
head_features: int,
|
| 598 |
-
multiplier: int,
|
| 599 |
-
use_rel_pos: bool,
|
| 600 |
-
rel_pos_num_buckets: Optional[int] = None,
|
| 601 |
-
rel_pos_max_distance: Optional[int] = None,
|
| 602 |
-
context_features: Optional[int] = None,
|
| 603 |
-
):
|
| 604 |
-
super().__init__()
|
| 605 |
-
|
| 606 |
-
self.use_cross_attention = exists(context_features) and context_features > 0
|
| 607 |
-
|
| 608 |
-
self.attention = Attention(
|
| 609 |
-
features=features,
|
| 610 |
-
num_heads=num_heads,
|
| 611 |
-
head_features=head_features,
|
| 612 |
-
use_rel_pos=use_rel_pos,
|
| 613 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 614 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
| 615 |
-
)
|
| 616 |
-
|
| 617 |
-
if self.use_cross_attention:
|
| 618 |
-
self.cross_attention = Attention(
|
| 619 |
-
features=features,
|
| 620 |
-
num_heads=num_heads,
|
| 621 |
-
head_features=head_features,
|
| 622 |
-
context_features=context_features,
|
| 623 |
-
use_rel_pos=use_rel_pos,
|
| 624 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 625 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
| 626 |
-
)
|
| 627 |
-
|
| 628 |
-
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
| 629 |
-
|
| 630 |
-
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 631 |
-
x = self.attention(x) + x
|
| 632 |
-
if self.use_cross_attention:
|
| 633 |
-
x = self.cross_attention(x, context=context) + x
|
| 634 |
-
x = self.feed_forward(x) + x
|
| 635 |
-
return x
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
"""
|
| 640 |
-
Time Embeddings
|
| 641 |
-
"""
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
class SinusoidalEmbedding(nn.Module):
|
| 645 |
-
def __init__(self, dim: int):
|
| 646 |
-
super().__init__()
|
| 647 |
-
self.dim = dim
|
| 648 |
-
|
| 649 |
-
def forward(self, x: Tensor) -> Tensor:
|
| 650 |
-
device, half_dim = x.device, self.dim // 2
|
| 651 |
-
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
| 652 |
-
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 653 |
-
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
| 654 |
-
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 655 |
-
|
| 656 |
-
|
| 657 |
class LearnedPositionalEmbedding(nn.Module):
|
| 658 |
"""Used for continuous time"""
|
| 659 |
|
|
|
|
| 279 |
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 280 |
# Compute and return attention
|
| 281 |
return self.attention(q, k, v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
| 284 |
mid_features = features * multiplier
|
|
|
|
| 308 |
mid_features = head_features * num_heads
|
| 309 |
|
| 310 |
if use_rel_pos:
|
| 311 |
+
raise ValueError
|
| 312 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
if out_features is None:
|
| 314 |
out_features = features
|
| 315 |
|
|
|
|
| 379 |
return self.attention(q, k, v)
|
| 380 |
|
| 381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
class LearnedPositionalEmbedding(nn.Module):
|
| 383 |
"""Used for continuous time"""
|
| 384 |
|
README.md
CHANGED
|
@@ -26,7 +26,7 @@ Beta version of [SHIFT](https://shift-europe.eu/) TTS tool with [AudioGen sounds
|
|
| 26 |
- [Analysis of emotion of SHIFT TTS](https://huggingface.co/dkounadis/artificial-styletts2/discussions/2)
|
| 27 |
- [Listen Also foreign languages](https://huggingface.co/dkounadis/artificial-styletts2/discussions/4) synthesized via [MMS TTS](https://huggingface.co/facebook/mms-tts)
|
| 28 |
|
| 29 |
-
## Listen
|
| 30 |
|
| 31 |
|
| 32 |
<a href="https://huggingface.co/dkounadis/artificial-styletts2/discussions/1#67854dcbd3e6beb1a78f7f20">Native English</a> / <a href="https://huggingface.co/dkounadis/artificial-styletts2/discussions/1#6783e3b00e7d90facec060c6">Non-native English: Accents</a> / <a href="https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv">Foreign languages</a>
|
|
@@ -39,10 +39,10 @@ Beta version of [SHIFT](https://shift-europe.eu/) TTS tool with [AudioGen sounds
|
|
| 39 |
|
| 40 |
<details>
|
| 41 |
<summary>
|
| 42 |
-
|
| 43 |
-
Build virtualenv / run `api.py`
|
| 44 |
-
|
| 45 |
</summary>
|
|
|
|
|
|
|
| 46 |
|
| 47 |
Clone
|
| 48 |
|
|
|
|
| 26 |
- [Analysis of emotion of SHIFT TTS](https://huggingface.co/dkounadis/artificial-styletts2/discussions/2)
|
| 27 |
- [Listen Also foreign languages](https://huggingface.co/dkounadis/artificial-styletts2/discussions/4) synthesized via [MMS TTS](https://huggingface.co/facebook/mms-tts)
|
| 28 |
|
| 29 |
+
## Listen Voices
|
| 30 |
|
| 31 |
|
| 32 |
<a href="https://huggingface.co/dkounadis/artificial-styletts2/discussions/1#67854dcbd3e6beb1a78f7f20">Native English</a> / <a href="https://huggingface.co/dkounadis/artificial-styletts2/discussions/1#6783e3b00e7d90facec060c6">Non-native English: Accents</a> / <a href="https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv">Foreign languages</a>
|
|
|
|
| 39 |
|
| 40 |
<details>
|
| 41 |
<summary>
|
| 42 |
+
Build virtualenv & run api.py
|
|
|
|
|
|
|
| 43 |
</summary>
|
| 44 |
+
Besides `demo.py` that runs as a standalone script. We also provide `api.py` that enables long-form TTS with soundscape
|
| 45 |
+
w/o need to load the TTS/AudioGen model again & again. The examples below use api.py.
|
| 46 |
|
| 47 |
Clone
|
| 48 |
|
models.py
CHANGED
|
@@ -16,7 +16,7 @@ from Utils.ASR.models import ASRCNN
|
|
| 16 |
from Utils.JDC.model import JDCNet
|
| 17 |
|
| 18 |
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
|
| 19 |
-
from Modules.diffusion.modules import
|
| 20 |
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
| 21 |
|
| 22 |
|
|
@@ -551,9 +551,7 @@ def build_model(args, text_aligner, pitch_extractor, bert):
|
|
| 551 |
context_features=args.style_dim*2,
|
| 552 |
**args.diffusion.transformer)
|
| 553 |
else:
|
| 554 |
-
|
| 555 |
-
context_embedding_features=bert.config.hidden_size,
|
| 556 |
-
**args.diffusion.transformer)
|
| 557 |
|
| 558 |
diffusion = AudioDiffusionConditional(
|
| 559 |
in_channels=1,
|
|
|
|
| 16 |
from Utils.JDC.model import JDCNet
|
| 17 |
|
| 18 |
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
|
| 19 |
+
from Modules.diffusion.modules import StyleTransformer1d
|
| 20 |
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
| 21 |
|
| 22 |
|
|
|
|
| 551 |
context_features=args.style_dim*2,
|
| 552 |
**args.diffusion.transformer)
|
| 553 |
else:
|
| 554 |
+
raise NotImplementedError
|
|
|
|
|
|
|
| 555 |
|
| 556 |
diffusion = AudioDiffusionConditional(
|
| 557 |
in_channels=1,
|