beta 16kHz
Browse files- Modules/hifigan.py +5 -5
- Utils/text_utils.py +1 -1
- api.py +134 -51
- models.py +3 -3
- msinference.py +27 -23
Modules/hifigan.py
CHANGED
|
@@ -122,14 +122,14 @@ class SineGen(torch.nn.Module):
|
|
| 122 |
|
| 123 |
rad_values = (f0_values / self.sampling_rate) % 1 # -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT LCM IS SIGNED HENCE not POSITIVE integer
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
|
| 128 |
|
| 129 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 130 |
scale_factor=1/self.upsample_scale,
|
| 131 |
mode="linear").transpose(1, 2)
|
| 132 |
-
|
| 133 |
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi # 1.89 sounds also nice has woofer at punctuation
|
| 134 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 135 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
|
@@ -215,7 +215,7 @@ class Generator(torch.nn.Module):
|
|
| 215 |
|
| 216 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
| 217 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
| 218 |
-
|
| 219 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
| 220 |
|
| 221 |
har_source = self.m_source(f0) # [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
|
|
@@ -229,7 +229,7 @@ class Generator(torch.nn.Module):
|
|
| 229 |
x_source = self.noise_res[i](x_source, s)
|
| 230 |
|
| 231 |
x = self.ups[i](x)
|
| 232 |
-
print(x.min(), x.max(), x_source.min(), x_source.max())
|
| 233 |
x = x + x_source
|
| 234 |
|
| 235 |
xs = None
|
|
@@ -351,7 +351,7 @@ class Decoder(nn.Module):
|
|
| 351 |
N = self.N_conv(N)
|
| 352 |
|
| 353 |
|
| 354 |
-
print(asr.shape, F0.shape, N.shape, 'TF')
|
| 355 |
|
| 356 |
|
| 357 |
x = torch.cat([asr, F0, N], axis=1)
|
|
|
|
| 122 |
|
| 123 |
rad_values = (f0_values / self.sampling_rate) % 1 # -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT LCM IS SIGNED HENCE not POSITIVE integer
|
| 124 |
|
| 125 |
+
|
| 126 |
|
| 127 |
|
| 128 |
|
| 129 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 130 |
scale_factor=1/self.upsample_scale,
|
| 131 |
mode="linear").transpose(1, 2)
|
| 132 |
+
|
| 133 |
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi # 1.89 sounds also nice has woofer at punctuation
|
| 134 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 135 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
|
|
|
| 215 |
|
| 216 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
| 217 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
| 218 |
+
|
| 219 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
| 220 |
|
| 221 |
har_source = self.m_source(f0) # [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
|
|
|
|
| 229 |
x_source = self.noise_res[i](x_source, s)
|
| 230 |
|
| 231 |
x = self.ups[i](x)
|
| 232 |
+
# print(x.min(), x.max(), x_source.min(), x_source.max())
|
| 233 |
x = x + x_source
|
| 234 |
|
| 235 |
xs = None
|
|
|
|
| 351 |
N = self.N_conv(N)
|
| 352 |
|
| 353 |
|
| 354 |
+
# print(asr.shape, F0.shape, N.shape, 'TF')
|
| 355 |
|
| 356 |
|
| 357 |
x = torch.cat([asr, F0, N], axis=1)
|
Utils/text_utils.py
CHANGED
|
@@ -85,7 +85,7 @@ def split_into_sentences(text):
|
|
| 85 |
|
| 86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
| 87 |
# -- even 400 phonemes sometimes OOM in cuda:4
|
| 88 |
-
sentences = [sub_sent+' ' for s in sentences for sub_sent in textwrap.wrap(s,
|
| 89 |
|
| 90 |
# if sentences and not sentences[-1]:
|
| 91 |
# sentences = sentences[:-1]
|
|
|
|
| 85 |
|
| 86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
| 87 |
# -- even 400 phonemes sometimes OOM in cuda:4
|
| 88 |
+
sentences = [sub_sent+' ' for s in sentences for sub_sent in textwrap.wrap(s, 200, break_long_words=0)]
|
| 89 |
|
| 90 |
# if sentences and not sentences[-1]:
|
| 91 |
# sentences = sentences[:-1]
|
api.py
CHANGED
|
@@ -6,6 +6,7 @@ from Utils.text_utils import split_into_sentences
|
|
| 6 |
import msinference
|
| 7 |
import re
|
| 8 |
import srt
|
|
|
|
| 9 |
import subprocess
|
| 10 |
import cv2
|
| 11 |
from pathlib import Path
|
|
@@ -20,6 +21,54 @@ sound_generator = AudioGen().to('cuda:0').eval() # duration chosen in generate(
|
|
| 20 |
|
| 21 |
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def _shorten(filename):
|
| 24 |
return filename.replace("/","")[-6:]
|
| 25 |
|
|
@@ -57,15 +106,19 @@ def _resize(image, width=None, height=None, inter=cv2.INTER_AREA):
|
|
| 57 |
|
| 58 |
def overlay(x,soundscape=None):
|
| 59 |
if soundscape is not None:
|
|
|
|
| 60 |
background = sound_generator.generate(soundscape,
|
| 61 |
-
duration=len(x)/
|
| 62 |
).detach().cpu().numpy() # bs, 11400 @.74s
|
| 63 |
-
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
def tts_multi_sentence(precomputed_style_vector=None,
|
|
@@ -87,6 +140,8 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
| 87 |
|
| 88 |
if precomputed_style_vector is not None:
|
| 89 |
x = []
|
|
|
|
|
|
|
| 90 |
for _sentence in text:
|
| 91 |
|
| 92 |
# StyleTTS2 - pronounciation Fx
|
|
@@ -96,7 +151,7 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
| 96 |
# fix sounding of sleepy AAABS TRAACT
|
| 97 |
_sentence = _sentence.replace('abstract', 'ahbstract') # 'ahstract'
|
| 98 |
x.append(msinference.inference(_sentence,
|
| 99 |
-
|
| 100 |
)
|
| 101 |
x = np.concatenate(x)
|
| 102 |
|
|
@@ -104,7 +159,7 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
| 104 |
|
| 105 |
else:
|
| 106 |
|
| 107 |
-
# dont split foreign sentences: Avoids
|
| 108 |
x = msinference.foreign(text=text,
|
| 109 |
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
|
| 110 |
speed=speed) # normalisation externally
|
|
@@ -164,7 +219,7 @@ def serve_wav():
|
|
| 164 |
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
|
| 165 |
assert args.video is not None
|
| 166 |
native_audio_file = '_tmp.wav'
|
| 167 |
-
subprocess.
|
| 168 |
["ffmpeg",
|
| 169 |
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
|
| 170 |
"-i",
|
|
@@ -172,20 +227,22 @@ def serve_wav():
|
|
| 172 |
"-f",
|
| 173 |
"mp3",
|
| 174 |
"-ar",
|
| 175 |
-
"
|
| 176 |
"-vn",
|
| 177 |
native_audio_file])
|
| 178 |
x_native, _ = soundfile.read(native_audio_file) # reads mp3
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
|
| 181 |
else:
|
| 182 |
with open(args.text, 'r') as f:
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# -- sub all punctuation with ' '
|
| 186 |
-
text = split_into_sentences(t) # split to short sentences (~100 phonemes max for OOM)
|
| 187 |
|
| 188 |
-
#
|
| 189 |
|
| 190 |
precomputed_style_vector = None
|
| 191 |
|
|
@@ -199,15 +256,13 @@ def serve_wav():
|
|
| 199 |
native_audio_file += '__native_audio_track.wav'
|
| 200 |
soundfile.write('tgt_spk.wav',
|
| 201 |
np.concatenate([
|
| 202 |
-
x_native[:int(4 *
|
| 203 |
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
|
| 204 |
|
| 205 |
-
# NOTE: style vector
|
| 206 |
|
| 207 |
-
# Native
|
| 208 |
-
|
| 209 |
if precomputed_style_vector is None:
|
| 210 |
-
|
| 211 |
if 'en_US' in args.voice or 'en_UK' in args.voice:
|
| 212 |
_dir = '/' if args.affective else '_v2/'
|
| 213 |
precomputed_style_vector = msinference.compute_style(
|
|
@@ -216,23 +271,20 @@ def serve_wav():
|
|
| 216 |
'#', '_').replace(
|
| 217 |
'cmu-arctic', 'cmu_arctic').replace(
|
| 218 |
'_low', '') + '.wav')
|
| 219 |
-
|
| 220 |
-
# Non-Native Eng
|
| 221 |
-
|
| 222 |
elif '_' in args.voice:
|
| 223 |
precomputed_style_vector = msinference.compute_style('assets/wavs/mimic3_foreign_4x/' + args.voice.replace(
|
| 224 |
'/', '_').replace('#', '_').replace(
|
| 225 |
'cmu-arctic', 'cmu_arctic').replace(
|
| 226 |
'_low', '') + '.wav')
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
# Foreign Lang - MMS/TTS
|
| 230 |
else:
|
| 231 |
print(f'\n\n\n\n\n FallBack to MMS TTS due to: {args.voice=}')
|
| 232 |
|
| 233 |
|
| 234 |
-
# precomputed_style_vector is None
|
| 235 |
-
|
|
|
|
| 236 |
|
| 237 |
if args.video is not None:
|
| 238 |
# banner - precomput @ 1920 pixels
|
|
@@ -304,14 +356,17 @@ def serve_wav():
|
|
| 304 |
im = np.copy(get_frame(t)) # pic
|
| 305 |
|
| 306 |
|
| 307 |
-
ix = int(t *
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
| 313 |
else:
|
| 314 |
-
frame =
|
| 315 |
|
| 316 |
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
|
| 317 |
|
|
@@ -352,16 +407,13 @@ def serve_wav():
|
|
| 352 |
if do_video_dub:
|
| 353 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
|
| 354 |
subtitles = text
|
| 355 |
-
MAX_LEN = int(subtitles[-1][2] + 17) *
|
| 356 |
# 17 extra seconds fail-safe for long-last-segment
|
| 357 |
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
|
| 358 |
pieces = []
|
| 359 |
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
|
| 360 |
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
pieces.append(tts_multi_sentence(text=[_text_],
|
| 365 |
precomputed_style_vector=precomputed_style_vector,
|
| 366 |
voice=args.voice,
|
| 367 |
soundscape=args.soundscape,
|
|
@@ -379,7 +431,7 @@ def serve_wav():
|
|
| 379 |
soundfile.write(AUDIO_TRACK,
|
| 380 |
# (is_tts * total + (1-is_tts) * x_native)[:, None],
|
| 381 |
(.64 * total + .27 * x_native)[:, None],
|
| 382 |
-
|
| 383 |
else: # Video from plain (.txt)
|
| 384 |
OUT_FILE = 'tmp.mp4'
|
| 385 |
x = tts_multi_sentence(text=text,
|
|
@@ -387,13 +439,20 @@ def serve_wav():
|
|
| 387 |
voice=args.voice,
|
| 388 |
soundscape=args.soundscape,
|
| 389 |
speed=args.speed)
|
| 390 |
-
soundfile.write(AUDIO_TRACK, x,
|
| 391 |
|
| 392 |
# IMAGE 2 SPEECH
|
| 393 |
|
| 394 |
if args.image is not None:
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
|
| 398 |
|
| 399 |
# SILENT CLIP
|
|
@@ -408,10 +467,10 @@ def serve_wav():
|
|
| 408 |
soundscape=args.soundscape,
|
| 409 |
speed=args.speed
|
| 410 |
)
|
| 411 |
-
soundfile.write(AUDIO_TRACK, x,
|
| 412 |
if args.video or args.image:
|
| 413 |
# write final output video
|
| 414 |
-
subprocess.
|
| 415 |
["ffmpeg",
|
| 416 |
"-y",
|
| 417 |
"-i",
|
|
@@ -437,7 +496,7 @@ def serve_wav():
|
|
| 437 |
soundscape=args.soundscape,
|
| 438 |
speed=args.speed)
|
| 439 |
OUT_FILE = 'tmp.wav'
|
| 440 |
-
soundfile.write(CACHE_DIR + OUT_FILE, x,
|
| 441 |
|
| 442 |
|
| 443 |
|
|
@@ -451,7 +510,7 @@ def serve_wav():
|
|
| 451 |
# response.headers["Content-Type"] = "audio/wav"
|
| 452 |
# https://stackoverflow.com/questions/67591467/
|
| 453 |
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
|
| 454 |
-
|
| 455 |
|
| 456 |
|
| 457 |
# send server's output as default file -> srv_result.xx
|
|
@@ -461,6 +520,30 @@ def serve_wav():
|
|
| 461 |
print('________________\n ? \n_______________')
|
| 462 |
return response
|
| 463 |
|
| 464 |
-
|
| 465 |
if __name__ == "__main__":
|
| 466 |
app.run(host="0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import msinference
|
| 7 |
import re
|
| 8 |
import srt
|
| 9 |
+
import time
|
| 10 |
import subprocess
|
| 11 |
import cv2
|
| 12 |
from pathlib import Path
|
|
|
|
| 21 |
|
| 22 |
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
|
| 23 |
|
| 24 |
+
|
| 25 |
+
def resize_with_white_padding(image):
|
| 26 |
+
"""
|
| 27 |
+
Resizes an image to 1920x1080 while preserving aspect ratio
|
| 28 |
+
by adding white padding.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
image (np.ndarray): The input image as a NumPy array.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
np.ndarray: The resized image with white padding.
|
| 35 |
+
"""
|
| 36 |
+
h, w = image.shape[:2]
|
| 37 |
+
target_h, target_w = 1080, 1920
|
| 38 |
+
aspect_ratio = w / h
|
| 39 |
+
target_aspect_ratio = target_w / target_h
|
| 40 |
+
|
| 41 |
+
if aspect_ratio > target_aspect_ratio:
|
| 42 |
+
# Image is wider than the target, pad top and bottom
|
| 43 |
+
new_w = target_w
|
| 44 |
+
new_h = int(new_w / aspect_ratio)
|
| 45 |
+
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
|
| 46 |
+
padding_h = target_h - new_h
|
| 47 |
+
top_padding = padding_h // 2
|
| 48 |
+
bottom_padding = padding_h - top_padding
|
| 49 |
+
padding = [(top_padding, bottom_padding), (0, 0)]
|
| 50 |
+
if len(image.shape) == 3:
|
| 51 |
+
padding.append((0, 0)) # Add padding for color channels
|
| 52 |
+
padded_image = np.pad(resized_image, padding, mode='constant', constant_values=255)
|
| 53 |
+
elif aspect_ratio < target_aspect_ratio:
|
| 54 |
+
# Image is taller than the target, pad left and right
|
| 55 |
+
new_h = target_h
|
| 56 |
+
new_w = int(new_h * aspect_ratio)
|
| 57 |
+
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
|
| 58 |
+
padding_w = target_w - new_w
|
| 59 |
+
left_padding = padding_w // 2
|
| 60 |
+
right_padding = padding_w - left_padding
|
| 61 |
+
padding = [(0, 0), (left_padding, right_padding)]
|
| 62 |
+
if len(image.shape) == 3:
|
| 63 |
+
padding.append((0, 0)) # Add padding for color channels
|
| 64 |
+
padded_image = np.pad(resized_image, padding, mode='constant', constant_values=255)
|
| 65 |
+
else:
|
| 66 |
+
# Aspect ratio matches the target, just resize
|
| 67 |
+
padded_image = cv2.resize(image, (target_w, target_h), interpolation=cv2.INTER_LANCZOS4)
|
| 68 |
+
|
| 69 |
+
return padded_image # image 2 speech
|
| 70 |
+
|
| 71 |
+
|
| 72 |
def _shorten(filename):
|
| 73 |
return filename.replace("/","")[-6:]
|
| 74 |
|
|
|
|
| 106 |
|
| 107 |
def overlay(x,soundscape=None):
|
| 108 |
if soundscape is not None:
|
| 109 |
+
# AudioGen sound is suffice to be ~10s long
|
| 110 |
background = sound_generator.generate(soundscape,
|
| 111 |
+
duration=len(x)/16000 + .74, # sound duration = TTS dur
|
| 112 |
).detach().cpu().numpy() # bs, 11400 @.74s
|
| 113 |
+
|
| 114 |
+
# len_soundscape = len(background)
|
| 115 |
+
|
| 116 |
+
# fading = .5 + .5 * np.tanh(4*(np.linspace(10, -10, len_soundscape) + 9.4)) # fade heaviside 1,1,1,1,...,0
|
| 117 |
+
|
| 118 |
+
# x = np.concatenate([fading * background, x], 0) # blend TTS with AudioGen
|
| 119 |
+
#background /= np.abs(background).max() + 1e-7 # amplify speech to full [-1,1]
|
| 120 |
+
x = .4 * x + .46 * background[:len(x)] # background will be longer by xtra .74s
|
| 121 |
+
return x # TTS / AudioGen @ 16kHz
|
| 122 |
|
| 123 |
|
| 124 |
def tts_multi_sentence(precomputed_style_vector=None,
|
|
|
|
| 140 |
|
| 141 |
if precomputed_style_vector is not None:
|
| 142 |
x = []
|
| 143 |
+
if not isinstance(text, list):
|
| 144 |
+
text = split_into_sentences(text) # Avoid OOM in StyleTTS2
|
| 145 |
for _sentence in text:
|
| 146 |
|
| 147 |
# StyleTTS2 - pronounciation Fx
|
|
|
|
| 151 |
# fix sounding of sleepy AAABS TRAACT
|
| 152 |
_sentence = _sentence.replace('abstract', 'ahbstract') # 'ahstract'
|
| 153 |
x.append(msinference.inference(_sentence,
|
| 154 |
+
precomputed_style_vector)
|
| 155 |
)
|
| 156 |
x = np.concatenate(x)
|
| 157 |
|
|
|
|
| 159 |
|
| 160 |
else:
|
| 161 |
|
| 162 |
+
# dont split foreign sentences: Avoids speaker change issue
|
| 163 |
x = msinference.foreign(text=text,
|
| 164 |
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
|
| 165 |
speed=speed) # normalisation externally
|
|
|
|
| 219 |
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
|
| 220 |
assert args.video is not None
|
| 221 |
native_audio_file = '_tmp.wav'
|
| 222 |
+
subprocess.run(
|
| 223 |
["ffmpeg",
|
| 224 |
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
|
| 225 |
"-i",
|
|
|
|
| 227 |
"-f",
|
| 228 |
"mp3",
|
| 229 |
"-ar",
|
| 230 |
+
"16000", # "22050 for mimic3",
|
| 231 |
"-vn",
|
| 232 |
native_audio_file])
|
| 233 |
x_native, _ = soundfile.read(native_audio_file) # reads mp3
|
| 234 |
+
|
| 235 |
+
# stereo in video
|
| 236 |
+
if x_native.ndim > 1:
|
| 237 |
+
x_native = x_native[:, 0] # stereo
|
| 238 |
+
|
| 239 |
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
|
| 240 |
else:
|
| 241 |
with open(args.text, 'r') as f:
|
| 242 |
+
text = ''.join(f)
|
| 243 |
+
text = re.sub(' +', ' ', text) # delete spaces / split in list in tts_multi_sentence()
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
# == STYLE VECTOR ==
|
| 246 |
|
| 247 |
precomputed_style_vector = None
|
| 248 |
|
|
|
|
| 256 |
native_audio_file += '__native_audio_track.wav'
|
| 257 |
soundfile.write('tgt_spk.wav',
|
| 258 |
np.concatenate([
|
| 259 |
+
x_native[:int(4 * 16000)]], 0).astype(np.float32), 16000) # 27400?
|
| 260 |
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
|
| 261 |
|
| 262 |
+
# NOTE: style vector is normally None here - except if --native arg was passed
|
| 263 |
|
| 264 |
+
# Native English Accent TTS
|
|
|
|
| 265 |
if precomputed_style_vector is None:
|
|
|
|
| 266 |
if 'en_US' in args.voice or 'en_UK' in args.voice:
|
| 267 |
_dir = '/' if args.affective else '_v2/'
|
| 268 |
precomputed_style_vector = msinference.compute_style(
|
|
|
|
| 271 |
'#', '_').replace(
|
| 272 |
'cmu-arctic', 'cmu_arctic').replace(
|
| 273 |
'_low', '') + '.wav')
|
| 274 |
+
# Non-Native English Accent TTS
|
|
|
|
|
|
|
| 275 |
elif '_' in args.voice:
|
| 276 |
precomputed_style_vector = msinference.compute_style('assets/wavs/mimic3_foreign_4x/' + args.voice.replace(
|
| 277 |
'/', '_').replace('#', '_').replace(
|
| 278 |
'cmu-arctic', 'cmu_arctic').replace(
|
| 279 |
'_low', '') + '.wav')
|
| 280 |
+
# Foreign Lang
|
|
|
|
|
|
|
| 281 |
else:
|
| 282 |
print(f'\n\n\n\n\n FallBack to MMS TTS due to: {args.voice=}')
|
| 283 |
|
| 284 |
|
| 285 |
+
# NOTE : precomputed_style_vector is still None if MMS TTS
|
| 286 |
+
|
| 287 |
+
# == SILENT VIDEO ==
|
| 288 |
|
| 289 |
if args.video is not None:
|
| 290 |
# banner - precomput @ 1920 pixels
|
|
|
|
| 356 |
im = np.copy(get_frame(t)) # pic
|
| 357 |
|
| 358 |
|
| 359 |
+
ix = int(t * 16000) # ix may overflow the is_tts.shape
|
| 360 |
+
if ix < num:
|
| 361 |
+
if is_tts[ix] > .5: # mask == 1 => tts / mask == 0 -> native
|
| 362 |
+
frame = frame_tts # rename frame to rsz_frame_... because if frame_tts is mod
|
| 363 |
+
# then is considered a "local variable" thus the "outer var"
|
| 364 |
+
# is not observed by python raising referenced before assign
|
| 365 |
+
else:
|
| 366 |
+
frame = frame_orig
|
| 367 |
+
# For the ix that is out of bounds of num assume frame_tts
|
| 368 |
else:
|
| 369 |
+
frame = frame_tts
|
| 370 |
|
| 371 |
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
|
| 372 |
|
|
|
|
| 407 |
if do_video_dub:
|
| 408 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
|
| 409 |
subtitles = text
|
| 410 |
+
MAX_LEN = int(subtitles[-1][2] + 17) * 16000
|
| 411 |
# 17 extra seconds fail-safe for long-last-segment
|
| 412 |
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
|
| 413 |
pieces = []
|
| 414 |
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
|
| 415 |
|
| 416 |
+
pieces.append(tts_multi_sentence(text=_text_,
|
|
|
|
|
|
|
|
|
|
| 417 |
precomputed_style_vector=precomputed_style_vector,
|
| 418 |
voice=args.voice,
|
| 419 |
soundscape=args.soundscape,
|
|
|
|
| 431 |
soundfile.write(AUDIO_TRACK,
|
| 432 |
# (is_tts * total + (1-is_tts) * x_native)[:, None],
|
| 433 |
(.64 * total + .27 * x_native)[:, None],
|
| 434 |
+
16000)
|
| 435 |
else: # Video from plain (.txt)
|
| 436 |
OUT_FILE = 'tmp.mp4'
|
| 437 |
x = tts_multi_sentence(text=text,
|
|
|
|
| 439 |
voice=args.voice,
|
| 440 |
soundscape=args.soundscape,
|
| 441 |
speed=args.speed)
|
| 442 |
+
soundfile.write(AUDIO_TRACK, x, 16000)
|
| 443 |
|
| 444 |
# IMAGE 2 SPEECH
|
| 445 |
|
| 446 |
if args.image is not None:
|
| 447 |
+
|
| 448 |
+
# Resize Input Image to 1920x1080 - Issue of .mp4 non visible for other aspect ratios
|
| 449 |
+
|
| 450 |
+
STATIC_FRAME = args.image + '.jpg' # 'assets/image_from_T31.jpg'
|
| 451 |
+
cv2.imwrite(
|
| 452 |
+
STATIC_FRAME,
|
| 453 |
+
resize_with_white_padding(cv2.imread(args.image)
|
| 454 |
+
))
|
| 455 |
+
|
| 456 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
|
| 457 |
|
| 458 |
# SILENT CLIP
|
|
|
|
| 467 |
soundscape=args.soundscape,
|
| 468 |
speed=args.speed
|
| 469 |
)
|
| 470 |
+
soundfile.write(AUDIO_TRACK, x, 16000)
|
| 471 |
if args.video or args.image:
|
| 472 |
# write final output video
|
| 473 |
+
subprocess.run(
|
| 474 |
["ffmpeg",
|
| 475 |
"-y",
|
| 476 |
"-i",
|
|
|
|
| 496 |
soundscape=args.soundscape,
|
| 497 |
speed=args.speed)
|
| 498 |
OUT_FILE = 'tmp.wav'
|
| 499 |
+
soundfile.write(CACHE_DIR + OUT_FILE, x, 16000)
|
| 500 |
|
| 501 |
|
| 502 |
|
|
|
|
| 510 |
# response.headers["Content-Type"] = "audio/wav"
|
| 511 |
# https://stackoverflow.com/questions/67591467/
|
| 512 |
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
|
| 513 |
+
# time.sleep(4)
|
| 514 |
|
| 515 |
|
| 516 |
# send server's output as default file -> srv_result.xx
|
|
|
|
| 520 |
print('________________\n ? \n_______________')
|
| 521 |
return response
|
| 522 |
|
|
|
|
| 523 |
if __name__ == "__main__":
|
| 524 |
app.run(host="0.0.0.0")
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# Concat. .mp4
|
| 528 |
+
|
| 529 |
+
# _list.txt
|
| 530 |
+
#
|
| 531 |
+
# file out/som_utasitvany_en_txt.mp4
|
| 532 |
+
# file out/som_utasitvany_hu_txt.mp4
|
| 533 |
+
#
|
| 534 |
+
#
|
| 535 |
+
# subprocess.run(
|
| 536 |
+
# [
|
| 537 |
+
# "ffmpeg",
|
| 538 |
+
# "-f",
|
| 539 |
+
# "concat",
|
| 540 |
+
# '-safe',
|
| 541 |
+
# '0',
|
| 542 |
+
# '-i',
|
| 543 |
+
# '_list.txt',
|
| 544 |
+
# '-c',
|
| 545 |
+
# 'copy',
|
| 546 |
+
# f'fusion.mp4', # save to correct location is handled in client
|
| 547 |
+
# ])
|
| 548 |
+
#
|
| 549 |
+
# ffmpeg -f concat -i mylist.txt -c copy output.mp4
|
models.py
CHANGED
|
@@ -304,7 +304,7 @@ class ProsodyPredictor(nn.Module):
|
|
| 304 |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 305 |
|
| 306 |
def F0Ntrain(self, x, s):
|
| 307 |
-
|
| 308 |
x, _ = self.shared(x.transpose(1, 2)) # [bs, time, ch] LSTM
|
| 309 |
|
| 310 |
x = x.transpose(1, 2) # [bs, ch, time]
|
|
@@ -313,11 +313,11 @@ class ProsodyPredictor(nn.Module):
|
|
| 313 |
F0 = x
|
| 314 |
|
| 315 |
for block in self.F0:
|
| 316 |
-
print(f'LOOP {F0.shape=} {s.shape=}\n')
|
| 317 |
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
|
| 318 |
F0 = block(F0, s) # This is an AdainResBlk1d expects conv1d dimensions
|
| 319 |
F0 = self.F0_proj(F0)
|
| 320 |
-
|
| 321 |
N = x
|
| 322 |
|
| 323 |
for block in self.N:
|
|
|
|
| 304 |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 305 |
|
| 306 |
def F0Ntrain(self, x, s):
|
| 307 |
+
|
| 308 |
x, _ = self.shared(x.transpose(1, 2)) # [bs, time, ch] LSTM
|
| 309 |
|
| 310 |
x = x.transpose(1, 2) # [bs, ch, time]
|
|
|
|
| 313 |
F0 = x
|
| 314 |
|
| 315 |
for block in self.F0:
|
| 316 |
+
# print(f'LOOP {F0.shape=} {s.shape=}\n')
|
| 317 |
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
|
| 318 |
F0 = block(F0, s) # This is an AdainResBlk1d expects conv1d dimensions
|
| 319 |
F0 = self.F0_proj(F0)
|
| 320 |
+
|
| 321 |
N = x
|
| 322 |
|
| 323 |
for block in self.N:
|
msinference.py
CHANGED
|
@@ -223,10 +223,15 @@ def inference(text,
|
|
| 223 |
s=ref)
|
| 224 |
|
| 225 |
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
|
| 226 |
-
|
| 227 |
-
|
|
|
|
| 228 |
if x.shape[0] > 10:
|
| 229 |
x /= np.abs(x).max() + 1e-7
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
else:
|
| 231 |
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
|
| 232 |
x = np.zeros(0)
|
|
@@ -393,18 +398,20 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
| 393 |
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
| 394 |
|
| 395 |
# CALL MMS TTS VITS
|
| 396 |
-
|
| 397 |
total_audio = []
|
| 398 |
-
|
| 399 |
# Split long sentences if deu to control voice switch - for other languages let text no-split
|
| 400 |
if not isinstance(text, list):
|
| 401 |
if lang_code == 'deu':
|
| 402 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes # -- even 400 phonemes sometimes OOM in cuda:4
|
| 403 |
# However prosody is nicer on non-split for MMS TTS
|
| 404 |
-
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text,
|
|
|
|
| 405 |
else:
|
| 406 |
-
text = [text]
|
| 407 |
-
|
|
|
|
| 408 |
for _t in text:
|
| 409 |
|
| 410 |
_t = _t.lower()
|
|
@@ -413,9 +420,9 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
| 413 |
|
| 414 |
_t = re.sub(r'\d+', number_to_phonemes, _t)
|
| 415 |
_t = fix_phones(_t)
|
| 416 |
-
|
| 417 |
elif lang_code == 'ron':
|
| 418 |
-
|
| 419 |
# numerals
|
| 420 |
_t = romanian_num2str(_t)
|
| 421 |
|
|
@@ -425,31 +432,28 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
| 425 |
|
| 426 |
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
|
| 427 |
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
|
| 428 |
-
|
| 429 |
with torch.no_grad():
|
| 430 |
-
|
| 431 |
# MMS
|
| 432 |
-
|
| 433 |
x = net_g(input_ids=inputs.input_ids.to(device),
|
| 434 |
attention_mask=inputs.attention_mask.to(device),
|
| 435 |
-
speed =
|
| 436 |
)[0, :]
|
| 437 |
-
|
| 438 |
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
|
| 439 |
-
|
| 440 |
total_audio.append(x)
|
| 441 |
-
|
| 442 |
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
| 443 |
-
|
| 444 |
x = torch.cat(total_audio).cpu().numpy()
|
| 445 |
-
|
| 446 |
x /= np.abs(x).max() + 1e-7
|
| 447 |
|
| 448 |
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
|
| 449 |
-
|
| 450 |
-
x
|
| 451 |
-
original_rate=16000,
|
| 452 |
-
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
|
| 453 |
-
return x
|
| 454 |
|
| 455 |
|
|
|
|
| 223 |
s=ref)
|
| 224 |
|
| 225 |
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
|
| 226 |
+
|
| 227 |
+
# StyleTTS2 is 24kHz -> Resample to 16kHz ofAudioGen / MMS
|
| 228 |
+
|
| 229 |
if x.shape[0] > 10:
|
| 230 |
x /= np.abs(x).max() + 1e-7
|
| 231 |
+
x = audresample.resample(signal=x.astype(np.float32),
|
| 232 |
+
original_rate=24000,
|
| 233 |
+
target_rate=16000)[0, :] # reshapes (64,) -> (1,64)
|
| 234 |
+
|
| 235 |
else:
|
| 236 |
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
|
| 237 |
x = np.zeros(0)
|
|
|
|
| 398 |
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
| 399 |
|
| 400 |
# CALL MMS TTS VITS
|
| 401 |
+
|
| 402 |
total_audio = []
|
| 403 |
+
|
| 404 |
# Split long sentences if deu to control voice switch - for other languages let text no-split
|
| 405 |
if not isinstance(text, list):
|
| 406 |
if lang_code == 'deu':
|
| 407 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes # -- even 400 phonemes sometimes OOM in cuda:4
|
| 408 |
# However prosody is nicer on non-split for MMS TTS
|
| 409 |
+
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 200, break_long_words=0)] # prepend txt snippet
|
| 410 |
+
# assert that it chooses unique voice
|
| 411 |
else:
|
| 412 |
+
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 140, break_long_words=0)] # allow longer non split text
|
| 413 |
+
# for non deu MMS TTS lang.
|
| 414 |
+
|
| 415 |
for _t in text:
|
| 416 |
|
| 417 |
_t = _t.lower()
|
|
|
|
| 420 |
|
| 421 |
_t = re.sub(r'\d+', number_to_phonemes, _t)
|
| 422 |
_t = fix_phones(_t)
|
| 423 |
+
|
| 424 |
elif lang_code == 'ron':
|
| 425 |
+
|
| 426 |
# numerals
|
| 427 |
_t = romanian_num2str(_t)
|
| 428 |
|
|
|
|
| 432 |
|
| 433 |
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
|
| 434 |
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
|
| 435 |
+
|
| 436 |
with torch.no_grad():
|
| 437 |
+
|
| 438 |
# MMS
|
| 439 |
+
|
| 440 |
x = net_g(input_ids=inputs.input_ids.to(device),
|
| 441 |
attention_mask=inputs.attention_mask.to(device),
|
| 442 |
+
speed = speed + .44 * np.random.rand() # variable speed for different sentence
|
| 443 |
)[0, :]
|
| 444 |
+
|
| 445 |
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
|
| 446 |
+
|
| 447 |
total_audio.append(x)
|
| 448 |
+
|
| 449 |
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
| 450 |
+
|
| 451 |
x = torch.cat(total_audio).cpu().numpy()
|
| 452 |
+
|
| 453 |
x /= np.abs(x).max() + 1e-7
|
| 454 |
|
| 455 |
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
|
| 456 |
+
|
| 457 |
+
return x # 16kHz - only resample StyleTTS2 from 24Hkz -> 16kHz
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
|