add lfs
Browse files- Modules/diffusion/diffusion.py +94 -0
- Modules/diffusion/modules.py +693 -0
- Modules/diffusion/sampler.py +691 -0
- Modules/diffusion/utils.py +82 -0
- Modules/hifigan.py +477 -0
- Modules/utils.py +14 -0
- Utils/ASR/__init__.py +1 -0
- Utils/ASR/config.yml +29 -0
- Utils/ASR/epoch_00080.pth +3 -0
- Utils/ASR/layers.py +354 -0
- Utils/ASR/models.py +186 -0
- Utils/JDC/__init__.py +1 -0
- Utils/JDC/bst.pth +3 -0
- Utils/JDC/model.py +190 -0
- Utils/PLBERT/config.yml +30 -0
- Utils/PLBERT/step_1000000.pth +3 -0
- Utils/PLBERT/util.py +42 -0
- Utils/Utils2/ASR/__init__.py +1 -0
- Utils/Utils2/ASR/config.yml +29 -0
- Utils/Utils2/ASR/epoch_00080.pth +3 -0
- Utils/Utils2/ASR/layers.py +354 -0
- Utils/Utils2/ASR/models.py +186 -0
- Utils/Utils2/JDC/__init__.py +1 -0
- Utils/Utils2/JDC/bst.pth +3 -0
- Utils/Utils2/JDC/model.py +190 -0
- Utils/Utils2/PLBERT/config.yml +30 -0
- Utils/Utils2/PLBERT/step_1000000.pth +3 -0
- Utils/Utils2/PLBERT/util.py +42 -0
- Utils/Utils2/config.yml +21 -0
- Utils/Utils2/engineer_style_vectors_v2.py +331 -0
- Utils/config.yml +21 -0
- Utils/engineer_style_vectors_v2.py +331 -0
- models.py +1 -1
Modules/diffusion/diffusion.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import pi
|
| 2 |
+
from random import randint
|
| 3 |
+
from typing import Any, Optional, Sequence, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from torch import Tensor, nn
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
from .utils import *
|
| 11 |
+
from .sampler import *
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
Diffusion Classes (generic for 1d data)
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Model1d(nn.Module):
|
| 19 |
+
def __init__(self, unet_type: str = "base", **kwargs):
|
| 20 |
+
super().__init__()
|
| 21 |
+
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
|
| 22 |
+
self.unet = None
|
| 23 |
+
self.diffusion = None
|
| 24 |
+
|
| 25 |
+
def forward(self, x: Tensor, **kwargs) -> Tensor:
|
| 26 |
+
return self.diffusion(x, **kwargs)
|
| 27 |
+
|
| 28 |
+
def sample(self, *args, **kwargs) -> Tensor:
|
| 29 |
+
return self.diffusion.sample(*args, **kwargs)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
"""
|
| 33 |
+
Audio Diffusion Classes (specific for 1d audio data)
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_default_model_kwargs():
|
| 38 |
+
return dict(
|
| 39 |
+
channels=128,
|
| 40 |
+
patch_size=16,
|
| 41 |
+
multipliers=[1, 2, 4, 4, 4, 4, 4],
|
| 42 |
+
factors=[4, 4, 4, 2, 2, 2],
|
| 43 |
+
num_blocks=[2, 2, 2, 2, 2, 2],
|
| 44 |
+
attentions=[0, 0, 0, 1, 1, 1, 1],
|
| 45 |
+
attention_heads=8,
|
| 46 |
+
attention_features=64,
|
| 47 |
+
attention_multiplier=2,
|
| 48 |
+
attention_use_rel_pos=False,
|
| 49 |
+
diffusion_type="v",
|
| 50 |
+
diffusion_sigma_distribution=UniformDistribution(),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_default_sampling_kwargs():
|
| 55 |
+
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AudioDiffusionModel(Model1d):
|
| 59 |
+
def __init__(self, **kwargs):
|
| 60 |
+
super().__init__(**{**get_default_model_kwargs(), **kwargs})
|
| 61 |
+
|
| 62 |
+
def sample(self, *args, **kwargs):
|
| 63 |
+
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class AudioDiffusionConditional(Model1d):
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
embedding_features: int,
|
| 70 |
+
embedding_max_length: int,
|
| 71 |
+
embedding_mask_proba: float = 0.1,
|
| 72 |
+
**kwargs,
|
| 73 |
+
):
|
| 74 |
+
self.embedding_mask_proba = embedding_mask_proba
|
| 75 |
+
default_kwargs = dict(
|
| 76 |
+
**get_default_model_kwargs(),
|
| 77 |
+
unet_type="cfg",
|
| 78 |
+
context_embedding_features=embedding_features,
|
| 79 |
+
context_embedding_max_length=embedding_max_length,
|
| 80 |
+
)
|
| 81 |
+
super().__init__(**{**default_kwargs, **kwargs})
|
| 82 |
+
|
| 83 |
+
def forward(self, *args, **kwargs):
|
| 84 |
+
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
|
| 85 |
+
return super().forward(*args, **{**default_kwargs, **kwargs})
|
| 86 |
+
|
| 87 |
+
def sample(self, *args, **kwargs):
|
| 88 |
+
default_kwargs = dict(
|
| 89 |
+
**get_default_sampling_kwargs(),
|
| 90 |
+
embedding_scale=5.0,
|
| 91 |
+
)
|
| 92 |
+
return super().sample(*args, **{**default_kwargs, **kwargs})
|
| 93 |
+
|
| 94 |
+
|
Modules/diffusion/modules.py
ADDED
|
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import floor, log, pi
|
| 2 |
+
from typing import Any, List, Optional, Sequence, Tuple, Union
|
| 3 |
+
|
| 4 |
+
from .utils import *
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange, reduce, repeat
|
| 9 |
+
from einops.layers.torch import Rearrange
|
| 10 |
+
from einops_exts import rearrange_many
|
| 11 |
+
from torch import Tensor, einsum
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
"""
|
| 15 |
+
Utils
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
class AdaLayerNorm(nn.Module):
|
| 19 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.channels = channels
|
| 22 |
+
self.eps = eps
|
| 23 |
+
|
| 24 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 25 |
+
|
| 26 |
+
def forward(self, x, s):
|
| 27 |
+
x = x.transpose(-1, -2)
|
| 28 |
+
x = x.transpose(1, -1)
|
| 29 |
+
|
| 30 |
+
h = self.fc(s)
|
| 31 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 32 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 33 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 37 |
+
x = (1 + gamma) * x + beta
|
| 38 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 39 |
+
|
| 40 |
+
class StyleTransformer1d(nn.Module):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
num_layers: int,
|
| 44 |
+
channels: int,
|
| 45 |
+
num_heads: int,
|
| 46 |
+
head_features: int,
|
| 47 |
+
multiplier: int,
|
| 48 |
+
use_context_time: bool = True,
|
| 49 |
+
use_rel_pos: bool = False,
|
| 50 |
+
context_features_multiplier: int = 1,
|
| 51 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 52 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 53 |
+
context_features: Optional[int] = None,
|
| 54 |
+
context_embedding_features: Optional[int] = None,
|
| 55 |
+
embedding_max_length: int = 512,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
self.blocks = nn.ModuleList(
|
| 60 |
+
[
|
| 61 |
+
StyleTransformerBlock(
|
| 62 |
+
features=channels + context_embedding_features,
|
| 63 |
+
head_features=head_features,
|
| 64 |
+
num_heads=num_heads,
|
| 65 |
+
multiplier=multiplier,
|
| 66 |
+
style_dim=context_features,
|
| 67 |
+
use_rel_pos=use_rel_pos,
|
| 68 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 69 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 70 |
+
)
|
| 71 |
+
for i in range(num_layers)
|
| 72 |
+
]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
self.to_out = nn.Sequential(
|
| 76 |
+
Rearrange("b t c -> b c t"),
|
| 77 |
+
nn.Conv1d(
|
| 78 |
+
in_channels=channels + context_embedding_features,
|
| 79 |
+
out_channels=channels,
|
| 80 |
+
kernel_size=1,
|
| 81 |
+
),
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
use_context_features = exists(context_features)
|
| 85 |
+
self.use_context_features = use_context_features
|
| 86 |
+
self.use_context_time = use_context_time
|
| 87 |
+
|
| 88 |
+
if use_context_time or use_context_features:
|
| 89 |
+
context_mapping_features = channels + context_embedding_features
|
| 90 |
+
|
| 91 |
+
self.to_mapping = nn.Sequential(
|
| 92 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 93 |
+
nn.GELU(),
|
| 94 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 95 |
+
nn.GELU(),
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if use_context_time:
|
| 99 |
+
assert exists(context_mapping_features)
|
| 100 |
+
self.to_time = nn.Sequential(
|
| 101 |
+
TimePositionalEmbedding(
|
| 102 |
+
dim=channels, out_features=context_mapping_features
|
| 103 |
+
),
|
| 104 |
+
nn.GELU(),
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if use_context_features:
|
| 108 |
+
assert exists(context_features) and exists(context_mapping_features)
|
| 109 |
+
self.to_features = nn.Sequential(
|
| 110 |
+
nn.Linear(
|
| 111 |
+
in_features=context_features, out_features=context_mapping_features
|
| 112 |
+
),
|
| 113 |
+
nn.GELU(),
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.fixed_embedding = FixedEmbedding(
|
| 117 |
+
max_length=embedding_max_length, features=context_embedding_features
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_mapping(
|
| 122 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
| 123 |
+
) -> Optional[Tensor]:
|
| 124 |
+
"""Combines context time features and features into mapping"""
|
| 125 |
+
items, mapping = [], None
|
| 126 |
+
# Compute time features
|
| 127 |
+
if self.use_context_time:
|
| 128 |
+
assert_message = "use_context_time=True but no time features provided"
|
| 129 |
+
assert exists(time), assert_message
|
| 130 |
+
items += [self.to_time(time)]
|
| 131 |
+
# Compute features
|
| 132 |
+
if self.use_context_features:
|
| 133 |
+
assert_message = "context_features exists but no features provided"
|
| 134 |
+
assert exists(features), assert_message
|
| 135 |
+
items += [self.to_features(features)]
|
| 136 |
+
|
| 137 |
+
# Compute joint mapping
|
| 138 |
+
if self.use_context_time or self.use_context_features:
|
| 139 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
| 140 |
+
mapping = self.to_mapping(mapping)
|
| 141 |
+
|
| 142 |
+
return mapping
|
| 143 |
+
|
| 144 |
+
def run(self, x, time, embedding, features):
|
| 145 |
+
|
| 146 |
+
mapping = self.get_mapping(time, features)
|
| 147 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
| 148 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
| 149 |
+
|
| 150 |
+
for block in self.blocks:
|
| 151 |
+
x = x + mapping
|
| 152 |
+
x = block(x, features)
|
| 153 |
+
|
| 154 |
+
x = x.mean(axis=1).unsqueeze(1)
|
| 155 |
+
x = self.to_out(x)
|
| 156 |
+
x = x.transpose(-1, -2)
|
| 157 |
+
|
| 158 |
+
return x
|
| 159 |
+
|
| 160 |
+
def forward(self, x: Tensor,
|
| 161 |
+
time: Tensor,
|
| 162 |
+
embedding_mask_proba: float = 0.0,
|
| 163 |
+
embedding: Optional[Tensor] = None,
|
| 164 |
+
features: Optional[Tensor] = None,
|
| 165 |
+
embedding_scale: float = 1.0) -> Tensor:
|
| 166 |
+
|
| 167 |
+
b, device = embedding.shape[0], embedding.device
|
| 168 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
| 169 |
+
if embedding_mask_proba > 0.0:
|
| 170 |
+
# Randomly mask embedding
|
| 171 |
+
batch_mask = rand_bool(
|
| 172 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
| 173 |
+
)
|
| 174 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
| 175 |
+
|
| 176 |
+
if embedding_scale != 1.0:
|
| 177 |
+
# Compute both normal and fixed embedding outputs
|
| 178 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
| 179 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
| 180 |
+
# Scale conditional output using classifier-free guidance
|
| 181 |
+
return out_masked + (out - out_masked) * embedding_scale
|
| 182 |
+
else:
|
| 183 |
+
return self.run(x, time, embedding=embedding, features=features)
|
| 184 |
+
|
| 185 |
+
return x
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class StyleTransformerBlock(nn.Module):
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
features: int,
|
| 192 |
+
num_heads: int,
|
| 193 |
+
head_features: int,
|
| 194 |
+
style_dim: int,
|
| 195 |
+
multiplier: int,
|
| 196 |
+
use_rel_pos: bool,
|
| 197 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 198 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 199 |
+
context_features: Optional[int] = None,
|
| 200 |
+
):
|
| 201 |
+
super().__init__()
|
| 202 |
+
|
| 203 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
| 204 |
+
|
| 205 |
+
self.attention = StyleAttention(
|
| 206 |
+
features=features,
|
| 207 |
+
style_dim=style_dim,
|
| 208 |
+
num_heads=num_heads,
|
| 209 |
+
head_features=head_features,
|
| 210 |
+
use_rel_pos=use_rel_pos,
|
| 211 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 212 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if self.use_cross_attention:
|
| 216 |
+
self.cross_attention = StyleAttention(
|
| 217 |
+
features=features,
|
| 218 |
+
style_dim=style_dim,
|
| 219 |
+
num_heads=num_heads,
|
| 220 |
+
head_features=head_features,
|
| 221 |
+
context_features=context_features,
|
| 222 |
+
use_rel_pos=use_rel_pos,
|
| 223 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 224 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
| 228 |
+
|
| 229 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 230 |
+
x = self.attention(x, s) + x
|
| 231 |
+
if self.use_cross_attention:
|
| 232 |
+
x = self.cross_attention(x, s, context=context) + x
|
| 233 |
+
x = self.feed_forward(x) + x
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
class StyleAttention(nn.Module):
|
| 237 |
+
def __init__(
|
| 238 |
+
self,
|
| 239 |
+
features: int,
|
| 240 |
+
*,
|
| 241 |
+
style_dim: int,
|
| 242 |
+
head_features: int,
|
| 243 |
+
num_heads: int,
|
| 244 |
+
context_features: Optional[int] = None,
|
| 245 |
+
use_rel_pos: bool,
|
| 246 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 247 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 248 |
+
):
|
| 249 |
+
super().__init__()
|
| 250 |
+
self.context_features = context_features
|
| 251 |
+
mid_features = head_features * num_heads
|
| 252 |
+
context_features = default(context_features, features)
|
| 253 |
+
|
| 254 |
+
self.norm = AdaLayerNorm(style_dim, features)
|
| 255 |
+
self.norm_context = AdaLayerNorm(style_dim, context_features)
|
| 256 |
+
self.to_q = nn.Linear(
|
| 257 |
+
in_features=features, out_features=mid_features, bias=False
|
| 258 |
+
)
|
| 259 |
+
self.to_kv = nn.Linear(
|
| 260 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
| 261 |
+
)
|
| 262 |
+
self.attention = AttentionBase(
|
| 263 |
+
features,
|
| 264 |
+
num_heads=num_heads,
|
| 265 |
+
head_features=head_features,
|
| 266 |
+
use_rel_pos=use_rel_pos,
|
| 267 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 268 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 272 |
+
assert_message = "You must provide a context when using context_features"
|
| 273 |
+
assert not self.context_features or exists(context), assert_message
|
| 274 |
+
# Use context if provided
|
| 275 |
+
context = default(context, x)
|
| 276 |
+
# Normalize then compute q from input and k,v from context
|
| 277 |
+
x, context = self.norm(x, s), self.norm_context(context, s)
|
| 278 |
+
|
| 279 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 280 |
+
# Compute and return attention
|
| 281 |
+
return self.attention(q, k, v)
|
| 282 |
+
|
| 283 |
+
class Transformer1d(nn.Module):
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
num_layers: int,
|
| 287 |
+
channels: int,
|
| 288 |
+
num_heads: int,
|
| 289 |
+
head_features: int,
|
| 290 |
+
multiplier: int,
|
| 291 |
+
use_context_time: bool = True,
|
| 292 |
+
use_rel_pos: bool = False,
|
| 293 |
+
context_features_multiplier: int = 1,
|
| 294 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 295 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 296 |
+
context_features: Optional[int] = None,
|
| 297 |
+
context_embedding_features: Optional[int] = None,
|
| 298 |
+
embedding_max_length: int = 512,
|
| 299 |
+
):
|
| 300 |
+
super().__init__()
|
| 301 |
+
|
| 302 |
+
self.blocks = nn.ModuleList(
|
| 303 |
+
[
|
| 304 |
+
TransformerBlock(
|
| 305 |
+
features=channels + context_embedding_features,
|
| 306 |
+
head_features=head_features,
|
| 307 |
+
num_heads=num_heads,
|
| 308 |
+
multiplier=multiplier,
|
| 309 |
+
use_rel_pos=use_rel_pos,
|
| 310 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 311 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 312 |
+
)
|
| 313 |
+
for i in range(num_layers)
|
| 314 |
+
]
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
self.to_out = nn.Sequential(
|
| 318 |
+
Rearrange("b t c -> b c t"),
|
| 319 |
+
nn.Conv1d(
|
| 320 |
+
in_channels=channels + context_embedding_features,
|
| 321 |
+
out_channels=channels,
|
| 322 |
+
kernel_size=1,
|
| 323 |
+
),
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
use_context_features = exists(context_features)
|
| 327 |
+
self.use_context_features = use_context_features
|
| 328 |
+
self.use_context_time = use_context_time
|
| 329 |
+
|
| 330 |
+
if use_context_time or use_context_features:
|
| 331 |
+
context_mapping_features = channels + context_embedding_features
|
| 332 |
+
|
| 333 |
+
self.to_mapping = nn.Sequential(
|
| 334 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 335 |
+
nn.GELU(),
|
| 336 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 337 |
+
nn.GELU(),
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
if use_context_time:
|
| 341 |
+
assert exists(context_mapping_features)
|
| 342 |
+
self.to_time = nn.Sequential(
|
| 343 |
+
TimePositionalEmbedding(
|
| 344 |
+
dim=channels, out_features=context_mapping_features
|
| 345 |
+
),
|
| 346 |
+
nn.GELU(),
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if use_context_features:
|
| 350 |
+
assert exists(context_features) and exists(context_mapping_features)
|
| 351 |
+
self.to_features = nn.Sequential(
|
| 352 |
+
nn.Linear(
|
| 353 |
+
in_features=context_features, out_features=context_mapping_features
|
| 354 |
+
),
|
| 355 |
+
nn.GELU(),
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
self.fixed_embedding = FixedEmbedding(
|
| 359 |
+
max_length=embedding_max_length, features=context_embedding_features
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def get_mapping(
|
| 364 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
| 365 |
+
) -> Optional[Tensor]:
|
| 366 |
+
"""Combines context time features and features into mapping"""
|
| 367 |
+
items, mapping = [], None
|
| 368 |
+
# Compute time features
|
| 369 |
+
if self.use_context_time:
|
| 370 |
+
assert_message = "use_context_time=True but no time features provided"
|
| 371 |
+
assert exists(time), assert_message
|
| 372 |
+
items += [self.to_time(time)]
|
| 373 |
+
# Compute features
|
| 374 |
+
if self.use_context_features:
|
| 375 |
+
assert_message = "context_features exists but no features provided"
|
| 376 |
+
assert exists(features), assert_message
|
| 377 |
+
items += [self.to_features(features)]
|
| 378 |
+
|
| 379 |
+
# Compute joint mapping
|
| 380 |
+
if self.use_context_time or self.use_context_features:
|
| 381 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
| 382 |
+
mapping = self.to_mapping(mapping)
|
| 383 |
+
|
| 384 |
+
return mapping
|
| 385 |
+
|
| 386 |
+
def run(self, x, time, embedding, features):
|
| 387 |
+
|
| 388 |
+
mapping = self.get_mapping(time, features)
|
| 389 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
| 390 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
| 391 |
+
|
| 392 |
+
for block in self.blocks:
|
| 393 |
+
x = x + mapping
|
| 394 |
+
x = block(x)
|
| 395 |
+
|
| 396 |
+
x = x.mean(axis=1).unsqueeze(1)
|
| 397 |
+
x = self.to_out(x)
|
| 398 |
+
x = x.transpose(-1, -2)
|
| 399 |
+
|
| 400 |
+
return x
|
| 401 |
+
|
| 402 |
+
def forward(self, x: Tensor,
|
| 403 |
+
time: Tensor,
|
| 404 |
+
embedding_mask_proba: float = 0.0,
|
| 405 |
+
embedding: Optional[Tensor] = None,
|
| 406 |
+
features: Optional[Tensor] = None,
|
| 407 |
+
embedding_scale: float = 1.0) -> Tensor:
|
| 408 |
+
|
| 409 |
+
b, device = embedding.shape[0], embedding.device
|
| 410 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
| 411 |
+
if embedding_mask_proba > 0.0:
|
| 412 |
+
# Randomly mask embedding
|
| 413 |
+
batch_mask = rand_bool(
|
| 414 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
| 415 |
+
)
|
| 416 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
| 417 |
+
|
| 418 |
+
if embedding_scale != 1.0:
|
| 419 |
+
# Compute both normal and fixed embedding outputs
|
| 420 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
| 421 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
| 422 |
+
# Scale conditional output using classifier-free guidance
|
| 423 |
+
return out_masked + (out - out_masked) * embedding_scale
|
| 424 |
+
else:
|
| 425 |
+
return self.run(x, time, embedding=embedding, features=features)
|
| 426 |
+
|
| 427 |
+
return x
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
"""
|
| 431 |
+
Attention Components
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
class RelativePositionBias(nn.Module):
|
| 436 |
+
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
| 437 |
+
super().__init__()
|
| 438 |
+
self.num_buckets = num_buckets
|
| 439 |
+
self.max_distance = max_distance
|
| 440 |
+
self.num_heads = num_heads
|
| 441 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
| 442 |
+
|
| 443 |
+
@staticmethod
|
| 444 |
+
def _relative_position_bucket(
|
| 445 |
+
relative_position: Tensor, num_buckets: int, max_distance: int
|
| 446 |
+
):
|
| 447 |
+
num_buckets //= 2
|
| 448 |
+
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
| 449 |
+
n = torch.abs(relative_position)
|
| 450 |
+
|
| 451 |
+
max_exact = num_buckets // 2
|
| 452 |
+
is_small = n < max_exact
|
| 453 |
+
|
| 454 |
+
val_if_large = (
|
| 455 |
+
max_exact
|
| 456 |
+
+ (
|
| 457 |
+
torch.log(n.float() / max_exact)
|
| 458 |
+
/ log(max_distance / max_exact)
|
| 459 |
+
* (num_buckets - max_exact)
|
| 460 |
+
).long()
|
| 461 |
+
)
|
| 462 |
+
val_if_large = torch.min(
|
| 463 |
+
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
ret += torch.where(is_small, n, val_if_large)
|
| 467 |
+
return ret
|
| 468 |
+
|
| 469 |
+
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
| 470 |
+
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
| 471 |
+
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
| 472 |
+
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
| 473 |
+
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
| 474 |
+
|
| 475 |
+
relative_position_bucket = self._relative_position_bucket(
|
| 476 |
+
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
bias = self.relative_attention_bias(relative_position_bucket)
|
| 480 |
+
bias = rearrange(bias, "m n h -> 1 h m n")
|
| 481 |
+
return bias
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
| 485 |
+
mid_features = features * multiplier
|
| 486 |
+
return nn.Sequential(
|
| 487 |
+
nn.Linear(in_features=features, out_features=mid_features),
|
| 488 |
+
nn.GELU(),
|
| 489 |
+
nn.Linear(in_features=mid_features, out_features=features),
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
class AttentionBase(nn.Module):
|
| 494 |
+
def __init__(
|
| 495 |
+
self,
|
| 496 |
+
features: int,
|
| 497 |
+
*,
|
| 498 |
+
head_features: int,
|
| 499 |
+
num_heads: int,
|
| 500 |
+
use_rel_pos: bool,
|
| 501 |
+
out_features: Optional[int] = None,
|
| 502 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 503 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 504 |
+
):
|
| 505 |
+
super().__init__()
|
| 506 |
+
self.scale = head_features ** -0.5
|
| 507 |
+
self.num_heads = num_heads
|
| 508 |
+
self.use_rel_pos = use_rel_pos
|
| 509 |
+
mid_features = head_features * num_heads
|
| 510 |
+
|
| 511 |
+
if use_rel_pos:
|
| 512 |
+
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
|
| 513 |
+
self.rel_pos = RelativePositionBias(
|
| 514 |
+
num_buckets=rel_pos_num_buckets,
|
| 515 |
+
max_distance=rel_pos_max_distance,
|
| 516 |
+
num_heads=num_heads,
|
| 517 |
+
)
|
| 518 |
+
if out_features is None:
|
| 519 |
+
out_features = features
|
| 520 |
+
|
| 521 |
+
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
|
| 522 |
+
|
| 523 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
| 524 |
+
# Split heads
|
| 525 |
+
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
| 526 |
+
# Compute similarity matrix
|
| 527 |
+
sim = einsum("... n d, ... m d -> ... n m", q, k)
|
| 528 |
+
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
|
| 529 |
+
sim = sim * self.scale
|
| 530 |
+
# Get attention matrix with softmax
|
| 531 |
+
attn = sim.softmax(dim=-1)
|
| 532 |
+
# Compute values
|
| 533 |
+
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
| 534 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
| 535 |
+
return self.to_out(out)
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
class Attention(nn.Module):
|
| 539 |
+
def __init__(
|
| 540 |
+
self,
|
| 541 |
+
features: int,
|
| 542 |
+
*,
|
| 543 |
+
head_features: int,
|
| 544 |
+
num_heads: int,
|
| 545 |
+
out_features: Optional[int] = None,
|
| 546 |
+
context_features: Optional[int] = None,
|
| 547 |
+
use_rel_pos: bool,
|
| 548 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 549 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 550 |
+
):
|
| 551 |
+
super().__init__()
|
| 552 |
+
self.context_features = context_features
|
| 553 |
+
mid_features = head_features * num_heads
|
| 554 |
+
context_features = default(context_features, features)
|
| 555 |
+
|
| 556 |
+
self.norm = nn.LayerNorm(features)
|
| 557 |
+
self.norm_context = nn.LayerNorm(context_features)
|
| 558 |
+
self.to_q = nn.Linear(
|
| 559 |
+
in_features=features, out_features=mid_features, bias=False
|
| 560 |
+
)
|
| 561 |
+
self.to_kv = nn.Linear(
|
| 562 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
self.attention = AttentionBase(
|
| 566 |
+
features,
|
| 567 |
+
out_features=out_features,
|
| 568 |
+
num_heads=num_heads,
|
| 569 |
+
head_features=head_features,
|
| 570 |
+
use_rel_pos=use_rel_pos,
|
| 571 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 572 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 576 |
+
assert_message = "You must provide a context when using context_features"
|
| 577 |
+
assert not self.context_features or exists(context), assert_message
|
| 578 |
+
# Use context if provided
|
| 579 |
+
context = default(context, x)
|
| 580 |
+
# Normalize then compute q from input and k,v from context
|
| 581 |
+
x, context = self.norm(x), self.norm_context(context)
|
| 582 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 583 |
+
# Compute and return attention
|
| 584 |
+
return self.attention(q, k, v)
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
"""
|
| 588 |
+
Transformer Blocks
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
class TransformerBlock(nn.Module):
|
| 593 |
+
def __init__(
|
| 594 |
+
self,
|
| 595 |
+
features: int,
|
| 596 |
+
num_heads: int,
|
| 597 |
+
head_features: int,
|
| 598 |
+
multiplier: int,
|
| 599 |
+
use_rel_pos: bool,
|
| 600 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 601 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 602 |
+
context_features: Optional[int] = None,
|
| 603 |
+
):
|
| 604 |
+
super().__init__()
|
| 605 |
+
|
| 606 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
| 607 |
+
|
| 608 |
+
self.attention = Attention(
|
| 609 |
+
features=features,
|
| 610 |
+
num_heads=num_heads,
|
| 611 |
+
head_features=head_features,
|
| 612 |
+
use_rel_pos=use_rel_pos,
|
| 613 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 614 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
if self.use_cross_attention:
|
| 618 |
+
self.cross_attention = Attention(
|
| 619 |
+
features=features,
|
| 620 |
+
num_heads=num_heads,
|
| 621 |
+
head_features=head_features,
|
| 622 |
+
context_features=context_features,
|
| 623 |
+
use_rel_pos=use_rel_pos,
|
| 624 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 625 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
| 629 |
+
|
| 630 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 631 |
+
x = self.attention(x) + x
|
| 632 |
+
if self.use_cross_attention:
|
| 633 |
+
x = self.cross_attention(x, context=context) + x
|
| 634 |
+
x = self.feed_forward(x) + x
|
| 635 |
+
return x
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
"""
|
| 640 |
+
Time Embeddings
|
| 641 |
+
"""
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
class SinusoidalEmbedding(nn.Module):
|
| 645 |
+
def __init__(self, dim: int):
|
| 646 |
+
super().__init__()
|
| 647 |
+
self.dim = dim
|
| 648 |
+
|
| 649 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 650 |
+
device, half_dim = x.device, self.dim // 2
|
| 651 |
+
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
| 652 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 653 |
+
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
| 654 |
+
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
class LearnedPositionalEmbedding(nn.Module):
|
| 658 |
+
"""Used for continuous time"""
|
| 659 |
+
|
| 660 |
+
def __init__(self, dim: int):
|
| 661 |
+
super().__init__()
|
| 662 |
+
assert (dim % 2) == 0
|
| 663 |
+
half_dim = dim // 2
|
| 664 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
| 665 |
+
|
| 666 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 667 |
+
x = rearrange(x, "b -> b 1")
|
| 668 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
| 669 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
| 670 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
| 671 |
+
return fouriered
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
| 675 |
+
return nn.Sequential(
|
| 676 |
+
LearnedPositionalEmbedding(dim),
|
| 677 |
+
nn.Linear(in_features=dim + 1, out_features=out_features),
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
class FixedEmbedding(nn.Module):
|
| 681 |
+
def __init__(self, max_length: int, features: int):
|
| 682 |
+
super().__init__()
|
| 683 |
+
self.max_length = max_length
|
| 684 |
+
self.embedding = nn.Embedding(max_length, features)
|
| 685 |
+
|
| 686 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 687 |
+
batch_size, length, device = *x.shape[0:2], x.device
|
| 688 |
+
assert_message = "Input sequence length must be <= max_length"
|
| 689 |
+
assert length <= self.max_length, assert_message
|
| 690 |
+
position = torch.arange(length, device=device)
|
| 691 |
+
fixed_embedding = self.embedding(position)
|
| 692 |
+
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
| 693 |
+
return fixed_embedding
|
Modules/diffusion/sampler.py
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import atan, cos, pi, sin, sqrt
|
| 2 |
+
from typing import Any, Callable, List, Optional, Tuple, Type
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from einops import rearrange, reduce
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
|
| 10 |
+
from .utils import *
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
Diffusion Training
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
""" Distributions """
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Distribution:
|
| 20 |
+
def __call__(self, num_samples: int, device: torch.device):
|
| 21 |
+
raise NotImplementedError()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class LogNormalDistribution(Distribution):
|
| 25 |
+
def __init__(self, mean: float, std: float):
|
| 26 |
+
self.mean = mean
|
| 27 |
+
self.std = std
|
| 28 |
+
|
| 29 |
+
def __call__(
|
| 30 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
| 31 |
+
) -> Tensor:
|
| 32 |
+
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
|
| 33 |
+
return normal.exp()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class UniformDistribution(Distribution):
|
| 37 |
+
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
| 38 |
+
return torch.rand(num_samples, device=device)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class VKDistribution(Distribution):
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
min_value: float = 0.0,
|
| 45 |
+
max_value: float = float("inf"),
|
| 46 |
+
sigma_data: float = 1.0,
|
| 47 |
+
):
|
| 48 |
+
self.min_value = min_value
|
| 49 |
+
self.max_value = max_value
|
| 50 |
+
self.sigma_data = sigma_data
|
| 51 |
+
|
| 52 |
+
def __call__(
|
| 53 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
| 54 |
+
) -> Tensor:
|
| 55 |
+
sigma_data = self.sigma_data
|
| 56 |
+
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
| 57 |
+
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
| 58 |
+
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
| 59 |
+
return torch.tan(u * pi / 2) * sigma_data
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
""" Diffusion Classes """
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
| 66 |
+
# Pads additional ndims to the right of the tensor
|
| 67 |
+
return x.view(*x.shape, *((1,) * ndim))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
| 71 |
+
if dynamic_threshold == 0.0:
|
| 72 |
+
return x.clamp(-1.0, 1.0)
|
| 73 |
+
else:
|
| 74 |
+
# Dynamic thresholding
|
| 75 |
+
# Find dynamic threshold quantile for each batch
|
| 76 |
+
x_flat = rearrange(x, "b ... -> b (...)")
|
| 77 |
+
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
| 78 |
+
# Clamp to a min of 1.0
|
| 79 |
+
scale.clamp_(min=1.0)
|
| 80 |
+
# Clamp all values and scale
|
| 81 |
+
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
| 82 |
+
x = x.clamp(-scale, scale) / scale
|
| 83 |
+
return x
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def to_batch(
|
| 87 |
+
batch_size: int,
|
| 88 |
+
device: torch.device,
|
| 89 |
+
x: Optional[float] = None,
|
| 90 |
+
xs: Optional[Tensor] = None,
|
| 91 |
+
) -> Tensor:
|
| 92 |
+
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
|
| 93 |
+
# If x provided use the same for all batch items
|
| 94 |
+
if exists(x):
|
| 95 |
+
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
|
| 96 |
+
assert exists(xs)
|
| 97 |
+
return xs
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class Diffusion(nn.Module):
|
| 101 |
+
|
| 102 |
+
alias: str = ""
|
| 103 |
+
|
| 104 |
+
"""Base diffusion class"""
|
| 105 |
+
|
| 106 |
+
def denoise_fn(
|
| 107 |
+
self,
|
| 108 |
+
x_noisy: Tensor,
|
| 109 |
+
sigmas: Optional[Tensor] = None,
|
| 110 |
+
sigma: Optional[float] = None,
|
| 111 |
+
**kwargs,
|
| 112 |
+
) -> Tensor:
|
| 113 |
+
raise NotImplementedError("Diffusion class missing denoise_fn")
|
| 114 |
+
|
| 115 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 116 |
+
raise NotImplementedError("Diffusion class missing forward function")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class VDiffusion(Diffusion):
|
| 120 |
+
|
| 121 |
+
alias = "v"
|
| 122 |
+
|
| 123 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.net = net
|
| 126 |
+
self.sigma_distribution = sigma_distribution
|
| 127 |
+
|
| 128 |
+
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
| 129 |
+
angle = sigmas * pi / 2
|
| 130 |
+
alpha = torch.cos(angle)
|
| 131 |
+
beta = torch.sin(angle)
|
| 132 |
+
return alpha, beta
|
| 133 |
+
|
| 134 |
+
def denoise_fn(
|
| 135 |
+
self,
|
| 136 |
+
x_noisy: Tensor,
|
| 137 |
+
sigmas: Optional[Tensor] = None,
|
| 138 |
+
sigma: Optional[float] = None,
|
| 139 |
+
**kwargs,
|
| 140 |
+
) -> Tensor:
|
| 141 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 142 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 143 |
+
return self.net(x_noisy, sigmas, **kwargs)
|
| 144 |
+
|
| 145 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 146 |
+
batch_size, device = x.shape[0], x.device
|
| 147 |
+
|
| 148 |
+
# Sample amount of noise to add for each batch element
|
| 149 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 150 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 151 |
+
|
| 152 |
+
# Get noise
|
| 153 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 154 |
+
|
| 155 |
+
# Combine input and noise weighted by half-circle
|
| 156 |
+
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
| 157 |
+
x_noisy = x * alpha + noise * beta
|
| 158 |
+
x_target = noise * alpha - x * beta
|
| 159 |
+
|
| 160 |
+
# Denoise and return loss
|
| 161 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
| 162 |
+
return F.mse_loss(x_denoised, x_target)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class KDiffusion(Diffusion):
|
| 166 |
+
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
| 167 |
+
|
| 168 |
+
alias = "k"
|
| 169 |
+
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
net: nn.Module,
|
| 173 |
+
*,
|
| 174 |
+
sigma_distribution: Distribution,
|
| 175 |
+
sigma_data: float, # data distribution standard deviation
|
| 176 |
+
dynamic_threshold: float = 0.0,
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
self.net = net
|
| 180 |
+
self.sigma_data = sigma_data
|
| 181 |
+
self.sigma_distribution = sigma_distribution
|
| 182 |
+
self.dynamic_threshold = dynamic_threshold
|
| 183 |
+
|
| 184 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
| 185 |
+
sigma_data = self.sigma_data
|
| 186 |
+
c_noise = torch.log(sigmas) * 0.25
|
| 187 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
| 188 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
| 189 |
+
c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
| 190 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
| 191 |
+
return c_skip, c_out, c_in, c_noise
|
| 192 |
+
|
| 193 |
+
def denoise_fn(
|
| 194 |
+
self,
|
| 195 |
+
x_noisy: Tensor,
|
| 196 |
+
sigmas: Optional[Tensor] = None,
|
| 197 |
+
sigma: Optional[float] = None,
|
| 198 |
+
**kwargs,
|
| 199 |
+
) -> Tensor:
|
| 200 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 201 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 202 |
+
|
| 203 |
+
# Predict network output and add skip connection
|
| 204 |
+
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
| 205 |
+
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
| 206 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
| 207 |
+
|
| 208 |
+
return x_denoised
|
| 209 |
+
|
| 210 |
+
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
| 211 |
+
# Computes weight depending on data distribution
|
| 212 |
+
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
| 213 |
+
|
| 214 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 215 |
+
batch_size, device = x.shape[0], x.device
|
| 216 |
+
from einops import rearrange, reduce
|
| 217 |
+
|
| 218 |
+
# Sample amount of noise to add for each batch element
|
| 219 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 220 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 221 |
+
|
| 222 |
+
# Add noise to input
|
| 223 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 224 |
+
x_noisy = x + sigmas_padded * noise
|
| 225 |
+
|
| 226 |
+
# Compute denoised values
|
| 227 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
| 228 |
+
|
| 229 |
+
# Compute weighted loss
|
| 230 |
+
losses = F.mse_loss(x_denoised, x, reduction="none")
|
| 231 |
+
losses = reduce(losses, "b ... -> b", "mean")
|
| 232 |
+
losses = losses * self.loss_weight(sigmas)
|
| 233 |
+
loss = losses.mean()
|
| 234 |
+
return loss
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class VKDiffusion(Diffusion):
|
| 238 |
+
|
| 239 |
+
alias = "vk"
|
| 240 |
+
|
| 241 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
| 242 |
+
super().__init__()
|
| 243 |
+
self.net = net
|
| 244 |
+
self.sigma_distribution = sigma_distribution
|
| 245 |
+
|
| 246 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
| 247 |
+
sigma_data = 1.0
|
| 248 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
| 249 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
| 250 |
+
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
| 251 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
| 252 |
+
return c_skip, c_out, c_in
|
| 253 |
+
|
| 254 |
+
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
| 255 |
+
return sigmas.atan() / pi * 2
|
| 256 |
+
|
| 257 |
+
def t_to_sigma(self, t: Tensor) -> Tensor:
|
| 258 |
+
return (t * pi / 2).tan()
|
| 259 |
+
|
| 260 |
+
def denoise_fn(
|
| 261 |
+
self,
|
| 262 |
+
x_noisy: Tensor,
|
| 263 |
+
sigmas: Optional[Tensor] = None,
|
| 264 |
+
sigma: Optional[float] = None,
|
| 265 |
+
**kwargs,
|
| 266 |
+
) -> Tensor:
|
| 267 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 268 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 269 |
+
|
| 270 |
+
# Predict network output and add skip connection
|
| 271 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
| 272 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
| 273 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
| 274 |
+
return x_denoised
|
| 275 |
+
|
| 276 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 277 |
+
batch_size, device = x.shape[0], x.device
|
| 278 |
+
|
| 279 |
+
# Sample amount of noise to add for each batch element
|
| 280 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 281 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 282 |
+
|
| 283 |
+
# Add noise to input
|
| 284 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 285 |
+
x_noisy = x + sigmas_padded * noise
|
| 286 |
+
|
| 287 |
+
# Compute model output
|
| 288 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
| 289 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
| 290 |
+
|
| 291 |
+
# Compute v-objective target
|
| 292 |
+
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
| 293 |
+
|
| 294 |
+
# Compute loss
|
| 295 |
+
loss = F.mse_loss(x_pred, v_target)
|
| 296 |
+
return loss
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
"""
|
| 300 |
+
Diffusion Sampling
|
| 301 |
+
"""
|
| 302 |
+
|
| 303 |
+
""" Schedules """
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class Schedule(nn.Module):
|
| 307 |
+
"""Interface used by different sampling schedules"""
|
| 308 |
+
|
| 309 |
+
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
| 310 |
+
raise NotImplementedError()
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class LinearSchedule(Schedule):
|
| 314 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
| 315 |
+
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
| 316 |
+
return sigmas
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class KarrasSchedule(Schedule):
|
| 320 |
+
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
| 321 |
+
|
| 322 |
+
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
| 323 |
+
super().__init__()
|
| 324 |
+
self.sigma_min = sigma_min
|
| 325 |
+
self.sigma_max = sigma_max
|
| 326 |
+
self.rho = rho
|
| 327 |
+
|
| 328 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
| 329 |
+
rho_inv = 1.0 / self.rho
|
| 330 |
+
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
|
| 331 |
+
sigmas = (
|
| 332 |
+
self.sigma_max ** rho_inv
|
| 333 |
+
+ (steps / (num_steps - 1))
|
| 334 |
+
* (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
|
| 335 |
+
) ** self.rho
|
| 336 |
+
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
|
| 337 |
+
return sigmas
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
""" Samplers """
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class Sampler(nn.Module):
|
| 344 |
+
|
| 345 |
+
diffusion_types: List[Type[Diffusion]] = []
|
| 346 |
+
|
| 347 |
+
def forward(
|
| 348 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 349 |
+
) -> Tensor:
|
| 350 |
+
raise NotImplementedError()
|
| 351 |
+
|
| 352 |
+
def inpaint(
|
| 353 |
+
self,
|
| 354 |
+
source: Tensor,
|
| 355 |
+
mask: Tensor,
|
| 356 |
+
fn: Callable,
|
| 357 |
+
sigmas: Tensor,
|
| 358 |
+
num_steps: int,
|
| 359 |
+
num_resamples: int,
|
| 360 |
+
) -> Tensor:
|
| 361 |
+
raise NotImplementedError("Inpainting not available with current sampler")
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class VSampler(Sampler):
|
| 365 |
+
|
| 366 |
+
diffusion_types = [VDiffusion]
|
| 367 |
+
|
| 368 |
+
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
| 369 |
+
angle = sigma * pi / 2
|
| 370 |
+
alpha = cos(angle)
|
| 371 |
+
beta = sin(angle)
|
| 372 |
+
return alpha, beta
|
| 373 |
+
|
| 374 |
+
def forward(
|
| 375 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 376 |
+
) -> Tensor:
|
| 377 |
+
x = sigmas[0] * noise
|
| 378 |
+
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
| 379 |
+
|
| 380 |
+
for i in range(num_steps - 1):
|
| 381 |
+
is_last = i == num_steps - 1
|
| 382 |
+
|
| 383 |
+
x_denoised = fn(x, sigma=sigmas[i])
|
| 384 |
+
x_pred = x * alpha - x_denoised * beta
|
| 385 |
+
x_eps = x * beta + x_denoised * alpha
|
| 386 |
+
|
| 387 |
+
if not is_last:
|
| 388 |
+
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
| 389 |
+
x = x_pred * alpha + x_eps * beta
|
| 390 |
+
|
| 391 |
+
return x_pred
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class KarrasSampler(Sampler):
|
| 395 |
+
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
| 396 |
+
|
| 397 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 398 |
+
|
| 399 |
+
def __init__(
|
| 400 |
+
self,
|
| 401 |
+
s_tmin: float = 0,
|
| 402 |
+
s_tmax: float = float("inf"),
|
| 403 |
+
s_churn: float = 0.0,
|
| 404 |
+
s_noise: float = 1.0,
|
| 405 |
+
):
|
| 406 |
+
super().__init__()
|
| 407 |
+
self.s_tmin = s_tmin
|
| 408 |
+
self.s_tmax = s_tmax
|
| 409 |
+
self.s_noise = s_noise
|
| 410 |
+
self.s_churn = s_churn
|
| 411 |
+
|
| 412 |
+
def step(
|
| 413 |
+
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
| 414 |
+
) -> Tensor:
|
| 415 |
+
"""Algorithm 2 (step)"""
|
| 416 |
+
# Select temporarily increased noise level
|
| 417 |
+
sigma_hat = sigma + gamma * sigma
|
| 418 |
+
# Add noise to move from sigma to sigma_hat
|
| 419 |
+
epsilon = self.s_noise * torch.randn_like(x)
|
| 420 |
+
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
| 421 |
+
# Evaluate ∂x/∂sigma at sigma_hat
|
| 422 |
+
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
| 423 |
+
# Take euler step from sigma_hat to sigma_next
|
| 424 |
+
x_next = x_hat + (sigma_next - sigma_hat) * d
|
| 425 |
+
# Second order correction
|
| 426 |
+
if sigma_next != 0:
|
| 427 |
+
model_out_next = fn(x_next, sigma=sigma_next)
|
| 428 |
+
d_prime = (x_next - model_out_next) / sigma_next
|
| 429 |
+
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
| 430 |
+
return x_next
|
| 431 |
+
|
| 432 |
+
def forward(
|
| 433 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 434 |
+
) -> Tensor:
|
| 435 |
+
x = sigmas[0] * noise
|
| 436 |
+
# Compute gammas
|
| 437 |
+
gammas = torch.where(
|
| 438 |
+
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
| 439 |
+
min(self.s_churn / num_steps, sqrt(2) - 1),
|
| 440 |
+
0.0,
|
| 441 |
+
)
|
| 442 |
+
# Denoise to sample
|
| 443 |
+
for i in range(num_steps - 1):
|
| 444 |
+
x = self.step(
|
| 445 |
+
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
return x
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
class AEulerSampler(Sampler):
|
| 452 |
+
|
| 453 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 454 |
+
|
| 455 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
| 456 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
| 457 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
| 458 |
+
return sigma_up, sigma_down
|
| 459 |
+
|
| 460 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
| 461 |
+
# Sigma steps
|
| 462 |
+
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
| 463 |
+
# Derivative at sigma (∂x/∂sigma)
|
| 464 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
| 465 |
+
# Euler method
|
| 466 |
+
x_next = x + d * (sigma_down - sigma)
|
| 467 |
+
# Add randomness
|
| 468 |
+
x_next = x_next + torch.randn_like(x) * sigma_up
|
| 469 |
+
return x_next
|
| 470 |
+
|
| 471 |
+
def forward(
|
| 472 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 473 |
+
) -> Tensor:
|
| 474 |
+
x = sigmas[0] * noise
|
| 475 |
+
# Denoise to sample
|
| 476 |
+
for i in range(num_steps - 1):
|
| 477 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 478 |
+
return x
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class ADPM2Sampler(Sampler):
|
| 482 |
+
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
| 483 |
+
|
| 484 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 485 |
+
|
| 486 |
+
def __init__(self, rho: float = 1.0):
|
| 487 |
+
super().__init__()
|
| 488 |
+
self.rho = rho
|
| 489 |
+
|
| 490 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
|
| 491 |
+
r = self.rho
|
| 492 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
| 493 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
| 494 |
+
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
|
| 495 |
+
return sigma_up, sigma_down, sigma_mid
|
| 496 |
+
|
| 497 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
| 498 |
+
# Sigma steps
|
| 499 |
+
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
|
| 500 |
+
# Derivative at sigma (∂x/∂sigma)
|
| 501 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
| 502 |
+
# Denoise to midpoint
|
| 503 |
+
x_mid = x + d * (sigma_mid - sigma)
|
| 504 |
+
# Derivative at sigma_mid (∂x_mid/∂sigma_mid)
|
| 505 |
+
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
|
| 506 |
+
# Denoise to next
|
| 507 |
+
x = x + d_mid * (sigma_down - sigma)
|
| 508 |
+
# Add randomness
|
| 509 |
+
x_next = x + torch.randn_like(x) * sigma_up
|
| 510 |
+
return x_next
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 514 |
+
) -> Tensor:
|
| 515 |
+
x = sigmas[0] * noise
|
| 516 |
+
# Denoise to sample
|
| 517 |
+
for i in range(num_steps - 1):
|
| 518 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 519 |
+
return x
|
| 520 |
+
|
| 521 |
+
def inpaint(
|
| 522 |
+
self,
|
| 523 |
+
source: Tensor,
|
| 524 |
+
mask: Tensor,
|
| 525 |
+
fn: Callable,
|
| 526 |
+
sigmas: Tensor,
|
| 527 |
+
num_steps: int,
|
| 528 |
+
num_resamples: int,
|
| 529 |
+
) -> Tensor:
|
| 530 |
+
x = sigmas[0] * torch.randn_like(source)
|
| 531 |
+
|
| 532 |
+
for i in range(num_steps - 1):
|
| 533 |
+
# Noise source to current noise level
|
| 534 |
+
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
| 535 |
+
for r in range(num_resamples):
|
| 536 |
+
# Merge noisy source and current then denoise
|
| 537 |
+
x = source_noisy * mask + x * ~mask
|
| 538 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 539 |
+
# Renoise if not last resample step
|
| 540 |
+
if r < num_resamples - 1:
|
| 541 |
+
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
| 542 |
+
x = x + sigma * torch.randn_like(x)
|
| 543 |
+
|
| 544 |
+
return source * mask + x * ~mask
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
""" Main Classes """
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class DiffusionSampler(nn.Module):
|
| 551 |
+
def __init__(
|
| 552 |
+
self,
|
| 553 |
+
diffusion: Diffusion,
|
| 554 |
+
*,
|
| 555 |
+
sampler: Sampler,
|
| 556 |
+
sigma_schedule: Schedule,
|
| 557 |
+
num_steps: Optional[int] = None,
|
| 558 |
+
clamp: bool = True,
|
| 559 |
+
):
|
| 560 |
+
super().__init__()
|
| 561 |
+
self.denoise_fn = diffusion.denoise_fn
|
| 562 |
+
self.sampler = sampler
|
| 563 |
+
self.sigma_schedule = sigma_schedule
|
| 564 |
+
self.num_steps = num_steps
|
| 565 |
+
self.clamp = clamp
|
| 566 |
+
|
| 567 |
+
# Check sampler is compatible with diffusion type
|
| 568 |
+
sampler_class = sampler.__class__.__name__
|
| 569 |
+
diffusion_class = diffusion.__class__.__name__
|
| 570 |
+
message = f"{sampler_class} incompatible with {diffusion_class}"
|
| 571 |
+
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
| 572 |
+
|
| 573 |
+
def forward(
|
| 574 |
+
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
|
| 575 |
+
) -> Tensor:
|
| 576 |
+
device = noise.device
|
| 577 |
+
num_steps = default(num_steps, self.num_steps) # type: ignore
|
| 578 |
+
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
| 579 |
+
# Compute sigmas using schedule
|
| 580 |
+
sigmas = self.sigma_schedule(num_steps, device)
|
| 581 |
+
# Append additional kwargs to denoise function (used e.g. for conditional unet)
|
| 582 |
+
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
|
| 583 |
+
# Sample using sampler
|
| 584 |
+
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
| 585 |
+
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
| 586 |
+
return x
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
class DiffusionInpainter(nn.Module):
|
| 590 |
+
def __init__(
|
| 591 |
+
self,
|
| 592 |
+
diffusion: Diffusion,
|
| 593 |
+
*,
|
| 594 |
+
num_steps: int,
|
| 595 |
+
num_resamples: int,
|
| 596 |
+
sampler: Sampler,
|
| 597 |
+
sigma_schedule: Schedule,
|
| 598 |
+
):
|
| 599 |
+
super().__init__()
|
| 600 |
+
self.denoise_fn = diffusion.denoise_fn
|
| 601 |
+
self.num_steps = num_steps
|
| 602 |
+
self.num_resamples = num_resamples
|
| 603 |
+
self.inpaint_fn = sampler.inpaint
|
| 604 |
+
self.sigma_schedule = sigma_schedule
|
| 605 |
+
|
| 606 |
+
@torch.no_grad()
|
| 607 |
+
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
| 608 |
+
x = self.inpaint_fn(
|
| 609 |
+
source=inpaint,
|
| 610 |
+
mask=inpaint_mask,
|
| 611 |
+
fn=self.denoise_fn,
|
| 612 |
+
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
| 613 |
+
num_steps=self.num_steps,
|
| 614 |
+
num_resamples=self.num_resamples,
|
| 615 |
+
)
|
| 616 |
+
return x
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
| 620 |
+
length, device = like.shape[2], like.device
|
| 621 |
+
mask = torch.ones_like(like, dtype=torch.bool)
|
| 622 |
+
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
| 623 |
+
return mask
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class SpanBySpanComposer(nn.Module):
|
| 627 |
+
def __init__(
|
| 628 |
+
self,
|
| 629 |
+
inpainter: DiffusionInpainter,
|
| 630 |
+
*,
|
| 631 |
+
num_spans: int,
|
| 632 |
+
):
|
| 633 |
+
super().__init__()
|
| 634 |
+
self.inpainter = inpainter
|
| 635 |
+
self.num_spans = num_spans
|
| 636 |
+
|
| 637 |
+
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
| 638 |
+
half_length = start.shape[2] // 2
|
| 639 |
+
|
| 640 |
+
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
| 641 |
+
# Inpaint second half from first half
|
| 642 |
+
inpaint = torch.zeros_like(start)
|
| 643 |
+
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
| 644 |
+
inpaint_mask = sequential_mask(like=start, start=half_length)
|
| 645 |
+
|
| 646 |
+
for i in range(self.num_spans):
|
| 647 |
+
# Inpaint second half
|
| 648 |
+
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
| 649 |
+
# Replace first half with generated second half
|
| 650 |
+
second_half = span[:, :, half_length:]
|
| 651 |
+
inpaint[:, :, :half_length] = second_half
|
| 652 |
+
# Save generated span
|
| 653 |
+
spans.append(second_half)
|
| 654 |
+
|
| 655 |
+
return torch.cat(spans, dim=2)
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
class XDiffusion(nn.Module):
|
| 659 |
+
def __init__(self, type: str, net: nn.Module, **kwargs):
|
| 660 |
+
super().__init__()
|
| 661 |
+
|
| 662 |
+
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
| 663 |
+
aliases = [t.alias for t in diffusion_classes] # type: ignore
|
| 664 |
+
message = f"type='{type}' must be one of {*aliases,}"
|
| 665 |
+
assert type in aliases, message
|
| 666 |
+
self.net = net
|
| 667 |
+
|
| 668 |
+
for XDiffusion in diffusion_classes:
|
| 669 |
+
if XDiffusion.alias == type: # type: ignore
|
| 670 |
+
self.diffusion = XDiffusion(net=net, **kwargs)
|
| 671 |
+
|
| 672 |
+
def forward(self, *args, **kwargs) -> Tensor:
|
| 673 |
+
return self.diffusion(*args, **kwargs)
|
| 674 |
+
|
| 675 |
+
def sample(
|
| 676 |
+
self,
|
| 677 |
+
noise: Tensor,
|
| 678 |
+
num_steps: int,
|
| 679 |
+
sigma_schedule: Schedule,
|
| 680 |
+
sampler: Sampler,
|
| 681 |
+
clamp: bool,
|
| 682 |
+
**kwargs,
|
| 683 |
+
) -> Tensor:
|
| 684 |
+
diffusion_sampler = DiffusionSampler(
|
| 685 |
+
diffusion=self.diffusion,
|
| 686 |
+
sampler=sampler,
|
| 687 |
+
sigma_schedule=sigma_schedule,
|
| 688 |
+
num_steps=num_steps,
|
| 689 |
+
clamp=clamp,
|
| 690 |
+
)
|
| 691 |
+
return diffusion_sampler(noise, **kwargs)
|
Modules/diffusion/utils.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import reduce
|
| 2 |
+
from inspect import isfunction
|
| 3 |
+
from math import ceil, floor, log2, pi
|
| 4 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from torch import Generator, Tensor
|
| 10 |
+
from typing_extensions import TypeGuard
|
| 11 |
+
|
| 12 |
+
T = TypeVar("T")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def exists(val: Optional[T]) -> TypeGuard[T]:
|
| 16 |
+
return val is not None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def iff(condition: bool, value: T) -> Optional[T]:
|
| 20 |
+
return value if condition else None
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
|
| 24 |
+
return isinstance(obj, list) or isinstance(obj, tuple)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
| 28 |
+
if exists(val):
|
| 29 |
+
return val
|
| 30 |
+
return d() if isfunction(d) else d
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def to_list(val: Union[T, Sequence[T]]) -> List[T]:
|
| 34 |
+
if isinstance(val, tuple):
|
| 35 |
+
return list(val)
|
| 36 |
+
if isinstance(val, list):
|
| 37 |
+
return val
|
| 38 |
+
return [val] # type: ignore
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def prod(vals: Sequence[int]) -> int:
|
| 42 |
+
return reduce(lambda x, y: x * y, vals)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def closest_power_2(x: float) -> int:
|
| 46 |
+
exponent = log2(x)
|
| 47 |
+
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
| 48 |
+
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
| 49 |
+
return 2 ** int(exponent_closest)
|
| 50 |
+
|
| 51 |
+
def rand_bool(shape, proba, device = None):
|
| 52 |
+
if proba == 1:
|
| 53 |
+
return torch.ones(shape, device=device, dtype=torch.bool)
|
| 54 |
+
elif proba == 0:
|
| 55 |
+
return torch.zeros(shape, device=device, dtype=torch.bool)
|
| 56 |
+
else:
|
| 57 |
+
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
Kwargs Utils
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
| 66 |
+
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
| 67 |
+
for key in d.keys():
|
| 68 |
+
no_prefix = int(not key.startswith(prefix))
|
| 69 |
+
return_dicts[no_prefix][key] = d[key]
|
| 70 |
+
return return_dicts
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
| 74 |
+
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
| 75 |
+
if keep_prefix:
|
| 76 |
+
return kwargs_with_prefix, kwargs
|
| 77 |
+
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
| 78 |
+
return kwargs_no_prefix, kwargs
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def prefix_dict(prefix: str, d: Dict) -> Dict:
|
| 82 |
+
return {prefix + str(k): v for k, v in d.items()}
|
Modules/hifigan.py
ADDED
|
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 6 |
+
from .utils import init_weights, get_padding
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
import random
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
LRELU_SLOPE = 0.1
|
| 13 |
+
|
| 14 |
+
class AdaIN1d(nn.Module):
|
| 15 |
+
def __init__(self, style_dim, num_features):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
| 18 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 19 |
+
|
| 20 |
+
def forward(self, x, s):
|
| 21 |
+
h = self.fc(s)
|
| 22 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 23 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 24 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 25 |
+
|
| 26 |
+
class AdaINResBlock1(torch.nn.Module):
|
| 27 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
| 28 |
+
super(AdaINResBlock1, self).__init__()
|
| 29 |
+
self.convs1 = nn.ModuleList([
|
| 30 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 31 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 32 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 33 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 34 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 35 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 36 |
+
])
|
| 37 |
+
self.convs1.apply(init_weights)
|
| 38 |
+
|
| 39 |
+
self.convs2 = nn.ModuleList([
|
| 40 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 41 |
+
padding=get_padding(kernel_size, 1))),
|
| 42 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 43 |
+
padding=get_padding(kernel_size, 1))),
|
| 44 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 45 |
+
padding=get_padding(kernel_size, 1)))
|
| 46 |
+
])
|
| 47 |
+
self.convs2.apply(init_weights)
|
| 48 |
+
|
| 49 |
+
self.adain1 = nn.ModuleList([
|
| 50 |
+
AdaIN1d(style_dim, channels),
|
| 51 |
+
AdaIN1d(style_dim, channels),
|
| 52 |
+
AdaIN1d(style_dim, channels),
|
| 53 |
+
])
|
| 54 |
+
|
| 55 |
+
self.adain2 = nn.ModuleList([
|
| 56 |
+
AdaIN1d(style_dim, channels),
|
| 57 |
+
AdaIN1d(style_dim, channels),
|
| 58 |
+
AdaIN1d(style_dim, channels),
|
| 59 |
+
])
|
| 60 |
+
|
| 61 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
| 62 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def forward(self, x, s):
|
| 66 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
| 67 |
+
xt = n1(x, s)
|
| 68 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
| 69 |
+
xt = c1(xt)
|
| 70 |
+
xt = n2(xt, s)
|
| 71 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
| 72 |
+
xt = c2(xt)
|
| 73 |
+
x = xt + x
|
| 74 |
+
return x
|
| 75 |
+
|
| 76 |
+
def remove_weight_norm(self):
|
| 77 |
+
for l in self.convs1:
|
| 78 |
+
remove_weight_norm(l)
|
| 79 |
+
for l in self.convs2:
|
| 80 |
+
remove_weight_norm(l)
|
| 81 |
+
|
| 82 |
+
class SineGen(torch.nn.Module):
|
| 83 |
+
""" Definition of sine generator
|
| 84 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 85 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 86 |
+
voiced_threshold = 0,
|
| 87 |
+
flag_for_pulse=False)
|
| 88 |
+
samp_rate: sampling rate in Hz
|
| 89 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 90 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 91 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 92 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 93 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 94 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 95 |
+
segment is always sin(np.pi) or cos(0)
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
| 99 |
+
sine_amp=0.1, noise_std=0.003,
|
| 100 |
+
voiced_threshold=0,
|
| 101 |
+
flag_for_pulse=False):
|
| 102 |
+
super(SineGen, self).__init__()
|
| 103 |
+
self.sine_amp = sine_amp
|
| 104 |
+
self.noise_std = noise_std
|
| 105 |
+
self.harmonic_num = harmonic_num
|
| 106 |
+
self.dim = self.harmonic_num + 1
|
| 107 |
+
self.sampling_rate = samp_rate
|
| 108 |
+
self.voiced_threshold = voiced_threshold
|
| 109 |
+
self.flag_for_pulse = flag_for_pulse
|
| 110 |
+
self.upsample_scale = upsample_scale
|
| 111 |
+
|
| 112 |
+
def _f02uv(self, f0):
|
| 113 |
+
# generate uv signal
|
| 114 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 115 |
+
return uv
|
| 116 |
+
|
| 117 |
+
def _f02sine(self, f0_values):
|
| 118 |
+
""" f0_values: (batchsize, length, dim)
|
| 119 |
+
where dim indicates fundamental tone and overtones
|
| 120 |
+
"""
|
| 121 |
+
# convert to F0 in rad. The interger part n can be ignored
|
| 122 |
+
# because 2 * np.pi * n doesn't affect phase
|
| 123 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
| 124 |
+
|
| 125 |
+
# initial phase noise (no noise for fundamental component)
|
| 126 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
| 127 |
+
device=f0_values.device)
|
| 128 |
+
rand_ini[:, 0] = 0
|
| 129 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 130 |
+
|
| 131 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
| 132 |
+
if not self.flag_for_pulse:
|
| 133 |
+
# # for normal case
|
| 134 |
+
|
| 135 |
+
# # To prevent torch.cumsum numerical overflow,
|
| 136 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
| 137 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
| 138 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
| 139 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 140 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 141 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 142 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 143 |
+
|
| 144 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 145 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 146 |
+
scale_factor=1/self.upsample_scale,
|
| 147 |
+
mode="linear").transpose(1, 2)
|
| 148 |
+
|
| 149 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 150 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 151 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 152 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 153 |
+
|
| 154 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 155 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 156 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
| 157 |
+
sines = torch.sin(phase)
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
# If necessary, make sure that the first time step of every
|
| 161 |
+
# voiced segments is sin(pi) or cos(0)
|
| 162 |
+
# This is used for pulse-train generation
|
| 163 |
+
|
| 164 |
+
# identify the last time step in unvoiced segments
|
| 165 |
+
uv = self._f02uv(f0_values)
|
| 166 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
| 167 |
+
uv_1[:, -1, :] = 1
|
| 168 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
| 169 |
+
|
| 170 |
+
# get the instantanouse phase
|
| 171 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
| 172 |
+
# different batch needs to be processed differently
|
| 173 |
+
for idx in range(f0_values.shape[0]):
|
| 174 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
| 175 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
| 176 |
+
# stores the accumulation of i.phase within
|
| 177 |
+
# each voiced segments
|
| 178 |
+
tmp_cumsum[idx, :, :] = 0
|
| 179 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
| 180 |
+
|
| 181 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
| 182 |
+
# within the previous voiced segment.
|
| 183 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
| 184 |
+
|
| 185 |
+
# get the sines
|
| 186 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
| 187 |
+
return sines
|
| 188 |
+
|
| 189 |
+
def forward(self, f0):
|
| 190 |
+
""" sine_tensor, uv = forward(f0)
|
| 191 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 192 |
+
f0 for unvoiced steps should be 0
|
| 193 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 194 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 195 |
+
"""
|
| 196 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
| 197 |
+
device=f0.device)
|
| 198 |
+
# fundamental component
|
| 199 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
| 200 |
+
|
| 201 |
+
# generate sine waveforms
|
| 202 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
| 203 |
+
|
| 204 |
+
# generate uv signal
|
| 205 |
+
# uv = torch.ones(f0.shape)
|
| 206 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
| 207 |
+
uv = self._f02uv(f0)
|
| 208 |
+
|
| 209 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 210 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 211 |
+
# . for voiced regions is self.noise_std
|
| 212 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 213 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 214 |
+
|
| 215 |
+
# first: set the unvoiced part to 0 by uv
|
| 216 |
+
# then: additive noise
|
| 217 |
+
sine_waves = sine_waves * uv + noise
|
| 218 |
+
return sine_waves, uv, noise
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 222 |
+
""" SourceModule for hn-nsf
|
| 223 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 224 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 225 |
+
sampling_rate: sampling_rate in Hz
|
| 226 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 227 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 228 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 229 |
+
note that amplitude of noise in unvoiced is decided
|
| 230 |
+
by sine_amp
|
| 231 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 232 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 233 |
+
F0_sampled (batchsize, length, 1)
|
| 234 |
+
Sine_source (batchsize, length, 1)
|
| 235 |
+
noise_source (batchsize, length 1)
|
| 236 |
+
uv (batchsize, length, 1)
|
| 237 |
+
"""
|
| 238 |
+
|
| 239 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 240 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 241 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 242 |
+
|
| 243 |
+
self.sine_amp = sine_amp
|
| 244 |
+
self.noise_std = add_noise_std
|
| 245 |
+
|
| 246 |
+
# to produce sine waveforms
|
| 247 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
| 248 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 249 |
+
|
| 250 |
+
# to merge source harmonics into a single excitation
|
| 251 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 252 |
+
self.l_tanh = torch.nn.Tanh()
|
| 253 |
+
|
| 254 |
+
def forward(self, x):
|
| 255 |
+
"""
|
| 256 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 257 |
+
F0_sampled (batchsize, length, 1)
|
| 258 |
+
Sine_source (batchsize, length, 1)
|
| 259 |
+
noise_source (batchsize, length 1)
|
| 260 |
+
"""
|
| 261 |
+
# source for harmonic branch
|
| 262 |
+
with torch.no_grad():
|
| 263 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
| 264 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 265 |
+
|
| 266 |
+
# source for noise branch, in the same shape as uv
|
| 267 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 268 |
+
return sine_merge, noise, uv
|
| 269 |
+
def padDiff(x):
|
| 270 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
| 271 |
+
|
| 272 |
+
class Generator(torch.nn.Module):
|
| 273 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
|
| 274 |
+
super(Generator, self).__init__()
|
| 275 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 276 |
+
self.num_upsamples = len(upsample_rates)
|
| 277 |
+
resblock = AdaINResBlock1
|
| 278 |
+
|
| 279 |
+
self.m_source = SourceModuleHnNSF(
|
| 280 |
+
sampling_rate=24000,
|
| 281 |
+
upsample_scale=np.prod(upsample_rates),
|
| 282 |
+
harmonic_num=8, voiced_threshod=10)
|
| 283 |
+
|
| 284 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 285 |
+
self.noise_convs = nn.ModuleList()
|
| 286 |
+
self.ups = nn.ModuleList()
|
| 287 |
+
self.noise_res = nn.ModuleList()
|
| 288 |
+
|
| 289 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 290 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 291 |
+
|
| 292 |
+
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
| 293 |
+
upsample_initial_channel//(2**(i+1)),
|
| 294 |
+
k, u, padding=(u//2 + u%2), output_padding=u%2)))
|
| 295 |
+
|
| 296 |
+
if i + 1 < len(upsample_rates): #
|
| 297 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
| 298 |
+
self.noise_convs.append(Conv1d(
|
| 299 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
| 300 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
| 301 |
+
else:
|
| 302 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 303 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
| 304 |
+
|
| 305 |
+
self.resblocks = nn.ModuleList()
|
| 306 |
+
|
| 307 |
+
self.alphas = nn.ParameterList()
|
| 308 |
+
self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
|
| 309 |
+
|
| 310 |
+
for i in range(len(self.ups)):
|
| 311 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 312 |
+
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
| 313 |
+
|
| 314 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 315 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
| 316 |
+
|
| 317 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
| 318 |
+
self.ups.apply(init_weights)
|
| 319 |
+
self.conv_post.apply(init_weights)
|
| 320 |
+
|
| 321 |
+
def forward(self, x, s, f0):
|
| 322 |
+
|
| 323 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 324 |
+
|
| 325 |
+
har_source, noi_source, uv = self.m_source(f0)
|
| 326 |
+
har_source = har_source.transpose(1, 2)
|
| 327 |
+
|
| 328 |
+
for i in range(self.num_upsamples):
|
| 329 |
+
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
| 330 |
+
x_source = self.noise_convs[i](har_source)
|
| 331 |
+
x_source = self.noise_res[i](x_source, s)
|
| 332 |
+
|
| 333 |
+
x = self.ups[i](x)
|
| 334 |
+
x = x + x_source
|
| 335 |
+
|
| 336 |
+
xs = None
|
| 337 |
+
for j in range(self.num_kernels):
|
| 338 |
+
if xs is None:
|
| 339 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
| 340 |
+
else:
|
| 341 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
| 342 |
+
x = xs / self.num_kernels
|
| 343 |
+
x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
|
| 344 |
+
x = self.conv_post(x)
|
| 345 |
+
x = torch.tanh(x)
|
| 346 |
+
|
| 347 |
+
return x
|
| 348 |
+
|
| 349 |
+
def remove_weight_norm(self):
|
| 350 |
+
print('Removing weight norm...')
|
| 351 |
+
for l in self.ups:
|
| 352 |
+
remove_weight_norm(l)
|
| 353 |
+
for l in self.resblocks:
|
| 354 |
+
l.remove_weight_norm()
|
| 355 |
+
remove_weight_norm(self.conv_pre)
|
| 356 |
+
remove_weight_norm(self.conv_post)
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class AdainResBlk1d(nn.Module):
|
| 360 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 361 |
+
upsample='none', dropout_p=0.0):
|
| 362 |
+
super().__init__()
|
| 363 |
+
self.actv = actv
|
| 364 |
+
self.upsample_type = upsample
|
| 365 |
+
self.upsample = UpSample1d(upsample)
|
| 366 |
+
self.learned_sc = dim_in != dim_out
|
| 367 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 368 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 369 |
+
|
| 370 |
+
if upsample == 'none':
|
| 371 |
+
self.pool = nn.Identity()
|
| 372 |
+
else:
|
| 373 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 377 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 378 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 379 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 380 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 381 |
+
if self.learned_sc:
|
| 382 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 383 |
+
|
| 384 |
+
def _shortcut(self, x):
|
| 385 |
+
x = self.upsample(x)
|
| 386 |
+
if self.learned_sc:
|
| 387 |
+
x = self.conv1x1(x)
|
| 388 |
+
return x
|
| 389 |
+
|
| 390 |
+
def _residual(self, x, s):
|
| 391 |
+
x = self.norm1(x, s)
|
| 392 |
+
x = self.actv(x)
|
| 393 |
+
x = self.pool(x)
|
| 394 |
+
x = self.conv1(self.dropout(x))
|
| 395 |
+
x = self.norm2(x, s)
|
| 396 |
+
x = self.actv(x)
|
| 397 |
+
x = self.conv2(self.dropout(x))
|
| 398 |
+
return x
|
| 399 |
+
|
| 400 |
+
def forward(self, x, s):
|
| 401 |
+
out = self._residual(x, s)
|
| 402 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
| 403 |
+
return out
|
| 404 |
+
|
| 405 |
+
class UpSample1d(nn.Module):
|
| 406 |
+
def __init__(self, layer_type):
|
| 407 |
+
super().__init__()
|
| 408 |
+
self.layer_type = layer_type
|
| 409 |
+
|
| 410 |
+
def forward(self, x):
|
| 411 |
+
if self.layer_type == 'none':
|
| 412 |
+
return x
|
| 413 |
+
else:
|
| 414 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 415 |
+
|
| 416 |
+
class Decoder(nn.Module):
|
| 417 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
| 418 |
+
resblock_kernel_sizes = [3,7,11],
|
| 419 |
+
upsample_rates = [10,5,3,2],
|
| 420 |
+
upsample_initial_channel=512,
|
| 421 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
| 422 |
+
upsample_kernel_sizes=[20,10,6,4]):
|
| 423 |
+
super().__init__()
|
| 424 |
+
|
| 425 |
+
self.decode = nn.ModuleList()
|
| 426 |
+
|
| 427 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
| 428 |
+
|
| 429 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 430 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 431 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 432 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
| 433 |
+
|
| 434 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 435 |
+
|
| 436 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 437 |
+
|
| 438 |
+
self.asr_res = nn.Sequential(
|
| 439 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
def forward(self, asr, F0_curve, N, s):
|
| 447 |
+
if self.training:
|
| 448 |
+
downlist = [0, 3, 7]
|
| 449 |
+
F0_down = downlist[random.randint(0, 2)]
|
| 450 |
+
downlist = [0, 3, 7, 15]
|
| 451 |
+
N_down = downlist[random.randint(0, 3)]
|
| 452 |
+
if F0_down:
|
| 453 |
+
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
| 454 |
+
if N_down:
|
| 455 |
+
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
| 459 |
+
N = self.N_conv(N.unsqueeze(1))
|
| 460 |
+
|
| 461 |
+
x = torch.cat([asr, F0, N], axis=1)
|
| 462 |
+
x = self.encode(x, s)
|
| 463 |
+
|
| 464 |
+
asr_res = self.asr_res(asr)
|
| 465 |
+
|
| 466 |
+
res = True
|
| 467 |
+
for block in self.decode:
|
| 468 |
+
if res:
|
| 469 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
| 470 |
+
x = block(x, s)
|
| 471 |
+
if block.upsample_type != "none":
|
| 472 |
+
res = False
|
| 473 |
+
|
| 474 |
+
x = self.generator(x, s, F0_curve)
|
| 475 |
+
return x
|
| 476 |
+
|
| 477 |
+
|
Modules/utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 2 |
+
classname = m.__class__.__name__
|
| 3 |
+
if classname.find("Conv") != -1:
|
| 4 |
+
m.weight.data.normal_(mean, std)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def apply_weight_norm(m):
|
| 8 |
+
classname = m.__class__.__name__
|
| 9 |
+
if classname.find("Conv") != -1:
|
| 10 |
+
weight_norm(m)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_padding(kernel_size, dilation=1):
|
| 14 |
+
return int((kernel_size*dilation - dilation)/2)
|
Utils/ASR/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/ASR/config.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "logs/20201006"
|
| 2 |
+
save_freq: 5
|
| 3 |
+
device: "cuda"
|
| 4 |
+
epochs: 180
|
| 5 |
+
batch_size: 64
|
| 6 |
+
pretrained_model: ""
|
| 7 |
+
train_data: "ASRDataset/train_list.txt"
|
| 8 |
+
val_data: "ASRDataset/val_list.txt"
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
data_augmentation: false
|
| 12 |
+
|
| 13 |
+
preprocess_parasm:
|
| 14 |
+
sr: 24000
|
| 15 |
+
spect_params:
|
| 16 |
+
n_fft: 2048
|
| 17 |
+
win_length: 1200
|
| 18 |
+
hop_length: 300
|
| 19 |
+
mel_params:
|
| 20 |
+
n_mels: 80
|
| 21 |
+
|
| 22 |
+
model_params:
|
| 23 |
+
input_dim: 80
|
| 24 |
+
hidden_dim: 256
|
| 25 |
+
n_token: 178
|
| 26 |
+
token_embedding_dim: 512
|
| 27 |
+
|
| 28 |
+
optimizer_params:
|
| 29 |
+
lr: 0.0005
|
Utils/ASR/epoch_00080.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
| 3 |
+
size 94552811
|
Utils/ASR/layers.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from typing import Optional, Any
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torchaudio
|
| 8 |
+
import torchaudio.functional as audio_F
|
| 9 |
+
|
| 10 |
+
import random
|
| 11 |
+
random.seed(0)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_activation_fn(activ):
|
| 15 |
+
if activ == 'relu':
|
| 16 |
+
return nn.ReLU()
|
| 17 |
+
elif activ == 'lrelu':
|
| 18 |
+
return nn.LeakyReLU(0.2)
|
| 19 |
+
elif activ == 'swish':
|
| 20 |
+
return lambda x: x*torch.sigmoid(x)
|
| 21 |
+
else:
|
| 22 |
+
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
| 23 |
+
|
| 24 |
+
class LinearNorm(torch.nn.Module):
|
| 25 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 26 |
+
super(LinearNorm, self).__init__()
|
| 27 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 28 |
+
|
| 29 |
+
torch.nn.init.xavier_uniform_(
|
| 30 |
+
self.linear_layer.weight,
|
| 31 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return self.linear_layer(x)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ConvNorm(torch.nn.Module):
|
| 38 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
| 39 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 40 |
+
super(ConvNorm, self).__init__()
|
| 41 |
+
if padding is None:
|
| 42 |
+
assert(kernel_size % 2 == 1)
|
| 43 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
| 44 |
+
|
| 45 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
| 46 |
+
kernel_size=kernel_size, stride=stride,
|
| 47 |
+
padding=padding, dilation=dilation,
|
| 48 |
+
bias=bias)
|
| 49 |
+
|
| 50 |
+
torch.nn.init.xavier_uniform_(
|
| 51 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 52 |
+
|
| 53 |
+
def forward(self, signal):
|
| 54 |
+
conv_signal = self.conv(signal)
|
| 55 |
+
return conv_signal
|
| 56 |
+
|
| 57 |
+
class CausualConv(nn.Module):
|
| 58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 59 |
+
super(CausualConv, self).__init__()
|
| 60 |
+
if padding is None:
|
| 61 |
+
assert(kernel_size % 2 == 1)
|
| 62 |
+
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
| 63 |
+
else:
|
| 64 |
+
self.padding = padding * 2
|
| 65 |
+
self.conv = nn.Conv1d(in_channels, out_channels,
|
| 66 |
+
kernel_size=kernel_size, stride=stride,
|
| 67 |
+
padding=self.padding,
|
| 68 |
+
dilation=dilation,
|
| 69 |
+
bias=bias)
|
| 70 |
+
|
| 71 |
+
torch.nn.init.xavier_uniform_(
|
| 72 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
x = self.conv(x)
|
| 76 |
+
x = x[:, :, :-self.padding]
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
class CausualBlock(nn.Module):
|
| 80 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
| 81 |
+
super(CausualBlock, self).__init__()
|
| 82 |
+
self.blocks = nn.ModuleList([
|
| 83 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 84 |
+
for i in range(n_conv)])
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
for block in self.blocks:
|
| 88 |
+
res = x
|
| 89 |
+
x = block(x)
|
| 90 |
+
x += res
|
| 91 |
+
return x
|
| 92 |
+
|
| 93 |
+
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
| 94 |
+
layers = [
|
| 95 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 96 |
+
_get_activation_fn(activ),
|
| 97 |
+
nn.BatchNorm1d(hidden_dim),
|
| 98 |
+
nn.Dropout(p=dropout_p),
|
| 99 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 100 |
+
_get_activation_fn(activ),
|
| 101 |
+
nn.Dropout(p=dropout_p)
|
| 102 |
+
]
|
| 103 |
+
return nn.Sequential(*layers)
|
| 104 |
+
|
| 105 |
+
class ConvBlock(nn.Module):
|
| 106 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self._n_groups = 8
|
| 109 |
+
self.blocks = nn.ModuleList([
|
| 110 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 111 |
+
for i in range(n_conv)])
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
for block in self.blocks:
|
| 116 |
+
res = x
|
| 117 |
+
x = block(x)
|
| 118 |
+
x += res
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
| 122 |
+
layers = [
|
| 123 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 124 |
+
_get_activation_fn(activ),
|
| 125 |
+
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
| 126 |
+
nn.Dropout(p=dropout_p),
|
| 127 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 128 |
+
_get_activation_fn(activ),
|
| 129 |
+
nn.Dropout(p=dropout_p)
|
| 130 |
+
]
|
| 131 |
+
return nn.Sequential(*layers)
|
| 132 |
+
|
| 133 |
+
class LocationLayer(nn.Module):
|
| 134 |
+
def __init__(self, attention_n_filters, attention_kernel_size,
|
| 135 |
+
attention_dim):
|
| 136 |
+
super(LocationLayer, self).__init__()
|
| 137 |
+
padding = int((attention_kernel_size - 1) / 2)
|
| 138 |
+
self.location_conv = ConvNorm(2, attention_n_filters,
|
| 139 |
+
kernel_size=attention_kernel_size,
|
| 140 |
+
padding=padding, bias=False, stride=1,
|
| 141 |
+
dilation=1)
|
| 142 |
+
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
| 143 |
+
bias=False, w_init_gain='tanh')
|
| 144 |
+
|
| 145 |
+
def forward(self, attention_weights_cat):
|
| 146 |
+
processed_attention = self.location_conv(attention_weights_cat)
|
| 147 |
+
processed_attention = processed_attention.transpose(1, 2)
|
| 148 |
+
processed_attention = self.location_dense(processed_attention)
|
| 149 |
+
return processed_attention
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Attention(nn.Module):
|
| 153 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 154 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 155 |
+
super(Attention, self).__init__()
|
| 156 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 157 |
+
bias=False, w_init_gain='tanh')
|
| 158 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 159 |
+
w_init_gain='tanh')
|
| 160 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 161 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 162 |
+
attention_location_kernel_size,
|
| 163 |
+
attention_dim)
|
| 164 |
+
self.score_mask_value = -float("inf")
|
| 165 |
+
|
| 166 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 167 |
+
attention_weights_cat):
|
| 168 |
+
"""
|
| 169 |
+
PARAMS
|
| 170 |
+
------
|
| 171 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 172 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 173 |
+
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
| 174 |
+
RETURNS
|
| 175 |
+
-------
|
| 176 |
+
alignment (batch, max_time)
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 180 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 181 |
+
energies = self.v(torch.tanh(
|
| 182 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 183 |
+
|
| 184 |
+
energies = energies.squeeze(-1)
|
| 185 |
+
return energies
|
| 186 |
+
|
| 187 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 188 |
+
attention_weights_cat, mask):
|
| 189 |
+
"""
|
| 190 |
+
PARAMS
|
| 191 |
+
------
|
| 192 |
+
attention_hidden_state: attention rnn last output
|
| 193 |
+
memory: encoder outputs
|
| 194 |
+
processed_memory: processed encoder outputs
|
| 195 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 196 |
+
mask: binary mask for padded data
|
| 197 |
+
"""
|
| 198 |
+
alignment = self.get_alignment_energies(
|
| 199 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 200 |
+
|
| 201 |
+
if mask is not None:
|
| 202 |
+
alignment.data.masked_fill_(mask, self.score_mask_value)
|
| 203 |
+
|
| 204 |
+
attention_weights = F.softmax(alignment, dim=1)
|
| 205 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 206 |
+
attention_context = attention_context.squeeze(1)
|
| 207 |
+
|
| 208 |
+
return attention_context, attention_weights
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ForwardAttentionV2(nn.Module):
|
| 212 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 213 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 214 |
+
super(ForwardAttentionV2, self).__init__()
|
| 215 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 216 |
+
bias=False, w_init_gain='tanh')
|
| 217 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 218 |
+
w_init_gain='tanh')
|
| 219 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 220 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 221 |
+
attention_location_kernel_size,
|
| 222 |
+
attention_dim)
|
| 223 |
+
self.score_mask_value = -float(1e20)
|
| 224 |
+
|
| 225 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 226 |
+
attention_weights_cat):
|
| 227 |
+
"""
|
| 228 |
+
PARAMS
|
| 229 |
+
------
|
| 230 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 231 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 232 |
+
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
| 233 |
+
RETURNS
|
| 234 |
+
-------
|
| 235 |
+
alignment (batch, max_time)
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 239 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 240 |
+
energies = self.v(torch.tanh(
|
| 241 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 242 |
+
|
| 243 |
+
energies = energies.squeeze(-1)
|
| 244 |
+
return energies
|
| 245 |
+
|
| 246 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 247 |
+
attention_weights_cat, mask, log_alpha):
|
| 248 |
+
"""
|
| 249 |
+
PARAMS
|
| 250 |
+
------
|
| 251 |
+
attention_hidden_state: attention rnn last output
|
| 252 |
+
memory: encoder outputs
|
| 253 |
+
processed_memory: processed encoder outputs
|
| 254 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 255 |
+
mask: binary mask for padded data
|
| 256 |
+
"""
|
| 257 |
+
log_energy = self.get_alignment_energies(
|
| 258 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 259 |
+
|
| 260 |
+
#log_energy =
|
| 261 |
+
|
| 262 |
+
if mask is not None:
|
| 263 |
+
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
| 264 |
+
|
| 265 |
+
#attention_weights = F.softmax(alignment, dim=1)
|
| 266 |
+
|
| 267 |
+
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
| 268 |
+
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
| 269 |
+
|
| 270 |
+
#log_total_score = log_alpha + content_score
|
| 271 |
+
|
| 272 |
+
#previous_attention_weights = attention_weights_cat[:,0,:]
|
| 273 |
+
|
| 274 |
+
log_alpha_shift_padded = []
|
| 275 |
+
max_time = log_energy.size(1)
|
| 276 |
+
for sft in range(2):
|
| 277 |
+
shifted = log_alpha[:,:max_time-sft]
|
| 278 |
+
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
| 279 |
+
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
| 280 |
+
|
| 281 |
+
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
| 282 |
+
|
| 283 |
+
log_alpha_new = biased + log_energy
|
| 284 |
+
|
| 285 |
+
attention_weights = F.softmax(log_alpha_new, dim=1)
|
| 286 |
+
|
| 287 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 288 |
+
attention_context = attention_context.squeeze(1)
|
| 289 |
+
|
| 290 |
+
return attention_context, attention_weights, log_alpha_new
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class PhaseShuffle2d(nn.Module):
|
| 294 |
+
def __init__(self, n=2):
|
| 295 |
+
super(PhaseShuffle2d, self).__init__()
|
| 296 |
+
self.n = n
|
| 297 |
+
self.random = random.Random(1)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, move=None):
|
| 300 |
+
# x.size = (B, C, M, L)
|
| 301 |
+
if move is None:
|
| 302 |
+
move = self.random.randint(-self.n, self.n)
|
| 303 |
+
|
| 304 |
+
if move == 0:
|
| 305 |
+
return x
|
| 306 |
+
else:
|
| 307 |
+
left = x[:, :, :, :move]
|
| 308 |
+
right = x[:, :, :, move:]
|
| 309 |
+
shuffled = torch.cat([right, left], dim=3)
|
| 310 |
+
return shuffled
|
| 311 |
+
|
| 312 |
+
class PhaseShuffle1d(nn.Module):
|
| 313 |
+
def __init__(self, n=2):
|
| 314 |
+
super(PhaseShuffle1d, self).__init__()
|
| 315 |
+
self.n = n
|
| 316 |
+
self.random = random.Random(1)
|
| 317 |
+
|
| 318 |
+
def forward(self, x, move=None):
|
| 319 |
+
# x.size = (B, C, M, L)
|
| 320 |
+
if move is None:
|
| 321 |
+
move = self.random.randint(-self.n, self.n)
|
| 322 |
+
|
| 323 |
+
if move == 0:
|
| 324 |
+
return x
|
| 325 |
+
else:
|
| 326 |
+
left = x[:, :, :move]
|
| 327 |
+
right = x[:, :, move:]
|
| 328 |
+
shuffled = torch.cat([right, left], dim=2)
|
| 329 |
+
|
| 330 |
+
return shuffled
|
| 331 |
+
|
| 332 |
+
class MFCC(nn.Module):
|
| 333 |
+
def __init__(self, n_mfcc=40, n_mels=80):
|
| 334 |
+
super(MFCC, self).__init__()
|
| 335 |
+
self.n_mfcc = n_mfcc
|
| 336 |
+
self.n_mels = n_mels
|
| 337 |
+
self.norm = 'ortho'
|
| 338 |
+
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
| 339 |
+
self.register_buffer('dct_mat', dct_mat)
|
| 340 |
+
|
| 341 |
+
def forward(self, mel_specgram):
|
| 342 |
+
if len(mel_specgram.shape) == 2:
|
| 343 |
+
mel_specgram = mel_specgram.unsqueeze(0)
|
| 344 |
+
unsqueezed = True
|
| 345 |
+
else:
|
| 346 |
+
unsqueezed = False
|
| 347 |
+
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
| 348 |
+
# -> (channel, time, n_mfcc).tranpose(...)
|
| 349 |
+
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
# unpack batch
|
| 352 |
+
if unsqueezed:
|
| 353 |
+
mfcc = mfcc.squeeze(0)
|
| 354 |
+
return mfcc
|
Utils/ASR/models.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import TransformerEncoder
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
| 7 |
+
|
| 8 |
+
class ASRCNN(nn.Module):
|
| 9 |
+
def __init__(self,
|
| 10 |
+
input_dim=80,
|
| 11 |
+
hidden_dim=256,
|
| 12 |
+
n_token=35,
|
| 13 |
+
n_layers=6,
|
| 14 |
+
token_embedding_dim=256,
|
| 15 |
+
|
| 16 |
+
):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.n_token = n_token
|
| 19 |
+
self.n_down = 1
|
| 20 |
+
self.to_mfcc = MFCC()
|
| 21 |
+
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
| 22 |
+
self.cnns = nn.Sequential(
|
| 23 |
+
*[nn.Sequential(
|
| 24 |
+
ConvBlock(hidden_dim),
|
| 25 |
+
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
| 26 |
+
) for n in range(n_layers)])
|
| 27 |
+
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
| 28 |
+
self.ctc_linear = nn.Sequential(
|
| 29 |
+
LinearNorm(hidden_dim//2, hidden_dim),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
LinearNorm(hidden_dim, n_token))
|
| 32 |
+
self.asr_s2s = ASRS2S(
|
| 33 |
+
embedding_dim=token_embedding_dim,
|
| 34 |
+
hidden_dim=hidden_dim//2,
|
| 35 |
+
n_token=n_token)
|
| 36 |
+
|
| 37 |
+
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
| 38 |
+
x = self.to_mfcc(x)
|
| 39 |
+
x = self.init_cnn(x)
|
| 40 |
+
x = self.cnns(x)
|
| 41 |
+
x = self.projection(x)
|
| 42 |
+
x = x.transpose(1, 2)
|
| 43 |
+
ctc_logit = self.ctc_linear(x)
|
| 44 |
+
if text_input is not None:
|
| 45 |
+
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
| 46 |
+
return ctc_logit, s2s_logit, s2s_attn
|
| 47 |
+
else:
|
| 48 |
+
return ctc_logit
|
| 49 |
+
|
| 50 |
+
def get_feature(self, x):
|
| 51 |
+
x = self.to_mfcc(x.squeeze(1))
|
| 52 |
+
x = self.init_cnn(x)
|
| 53 |
+
x = self.cnns(x)
|
| 54 |
+
x = self.projection(x)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
def length_to_mask(self, lengths):
|
| 58 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 59 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
| 60 |
+
return mask
|
| 61 |
+
|
| 62 |
+
def get_future_mask(self, out_length, unmask_future_steps=0):
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
out_length (int): returned mask shape is (out_length, out_length).
|
| 66 |
+
unmask_futre_steps (int): unmasking future step size.
|
| 67 |
+
Return:
|
| 68 |
+
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
| 69 |
+
"""
|
| 70 |
+
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
| 71 |
+
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
| 72 |
+
return mask
|
| 73 |
+
|
| 74 |
+
class ASRS2S(nn.Module):
|
| 75 |
+
def __init__(self,
|
| 76 |
+
embedding_dim=256,
|
| 77 |
+
hidden_dim=512,
|
| 78 |
+
n_location_filters=32,
|
| 79 |
+
location_kernel_size=63,
|
| 80 |
+
n_token=40):
|
| 81 |
+
super(ASRS2S, self).__init__()
|
| 82 |
+
self.embedding = nn.Embedding(n_token, embedding_dim)
|
| 83 |
+
val_range = math.sqrt(6 / hidden_dim)
|
| 84 |
+
self.embedding.weight.data.uniform_(-val_range, val_range)
|
| 85 |
+
|
| 86 |
+
self.decoder_rnn_dim = hidden_dim
|
| 87 |
+
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
| 88 |
+
self.attention_layer = Attention(
|
| 89 |
+
self.decoder_rnn_dim,
|
| 90 |
+
hidden_dim,
|
| 91 |
+
hidden_dim,
|
| 92 |
+
n_location_filters,
|
| 93 |
+
location_kernel_size
|
| 94 |
+
)
|
| 95 |
+
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
| 96 |
+
self.project_to_hidden = nn.Sequential(
|
| 97 |
+
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
| 98 |
+
nn.Tanh())
|
| 99 |
+
self.sos = 1
|
| 100 |
+
self.eos = 2
|
| 101 |
+
|
| 102 |
+
def initialize_decoder_states(self, memory, mask):
|
| 103 |
+
"""
|
| 104 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 105 |
+
"""
|
| 106 |
+
B, L, H = memory.shape
|
| 107 |
+
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 108 |
+
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 109 |
+
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
| 110 |
+
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
| 111 |
+
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
| 112 |
+
self.memory = memory
|
| 113 |
+
self.processed_memory = self.attention_layer.memory_layer(memory)
|
| 114 |
+
self.mask = mask
|
| 115 |
+
self.unk_index = 3
|
| 116 |
+
self.random_mask = 0.1
|
| 117 |
+
|
| 118 |
+
def forward(self, memory, memory_mask, text_input):
|
| 119 |
+
"""
|
| 120 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 121 |
+
moemory_mask.shape = (B, L, )
|
| 122 |
+
texts_input.shape = (B, T)
|
| 123 |
+
"""
|
| 124 |
+
self.initialize_decoder_states(memory, memory_mask)
|
| 125 |
+
# text random mask
|
| 126 |
+
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
| 127 |
+
_text_input = text_input.clone()
|
| 128 |
+
_text_input.masked_fill_(random_mask, self.unk_index)
|
| 129 |
+
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
| 130 |
+
start_embedding = self.embedding(
|
| 131 |
+
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
| 132 |
+
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
| 133 |
+
|
| 134 |
+
hidden_outputs, logit_outputs, alignments = [], [], []
|
| 135 |
+
while len(hidden_outputs) < decoder_inputs.size(0):
|
| 136 |
+
|
| 137 |
+
decoder_input = decoder_inputs[len(hidden_outputs)]
|
| 138 |
+
hidden, logit, attention_weights = self.decode(decoder_input)
|
| 139 |
+
hidden_outputs += [hidden]
|
| 140 |
+
logit_outputs += [logit]
|
| 141 |
+
alignments += [attention_weights]
|
| 142 |
+
|
| 143 |
+
hidden_outputs, logit_outputs, alignments = \
|
| 144 |
+
self.parse_decoder_outputs(
|
| 145 |
+
hidden_outputs, logit_outputs, alignments)
|
| 146 |
+
|
| 147 |
+
return hidden_outputs, logit_outputs, alignments
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def decode(self, decoder_input):
|
| 151 |
+
|
| 152 |
+
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
| 153 |
+
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
| 154 |
+
cell_input,
|
| 155 |
+
(self.decoder_hidden, self.decoder_cell))
|
| 156 |
+
|
| 157 |
+
attention_weights_cat = torch.cat(
|
| 158 |
+
(self.attention_weights.unsqueeze(1),
|
| 159 |
+
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
| 160 |
+
|
| 161 |
+
self.attention_context, self.attention_weights = self.attention_layer(
|
| 162 |
+
self.decoder_hidden,
|
| 163 |
+
self.memory,
|
| 164 |
+
self.processed_memory,
|
| 165 |
+
attention_weights_cat,
|
| 166 |
+
self.mask)
|
| 167 |
+
|
| 168 |
+
self.attention_weights_cum += self.attention_weights
|
| 169 |
+
|
| 170 |
+
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
| 171 |
+
hidden = self.project_to_hidden(hidden_and_context)
|
| 172 |
+
|
| 173 |
+
# dropout to increasing g
|
| 174 |
+
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
| 175 |
+
|
| 176 |
+
return hidden, logit, self.attention_weights
|
| 177 |
+
|
| 178 |
+
def parse_decoder_outputs(self, hidden, logit, alignments):
|
| 179 |
+
|
| 180 |
+
# -> [B, T_out + 1, max_time]
|
| 181 |
+
alignments = torch.stack(alignments).transpose(0,1)
|
| 182 |
+
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
| 183 |
+
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
| 184 |
+
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
| 185 |
+
|
| 186 |
+
return hidden, logit, alignments
|
Utils/JDC/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/JDC/bst.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
| 3 |
+
size 21029926
|
Utils/JDC/model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of model from:
|
| 3 |
+
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
| 4 |
+
Convolutional Recurrent Neural Networks" (2019)
|
| 5 |
+
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
class JDCNet(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
Joint Detection and Classification Network model for singing voice melody.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.num_class = num_class
|
| 17 |
+
|
| 18 |
+
# input = (b, 1, 31, 513), b = batch size
|
| 19 |
+
self.conv_block = nn.Sequential(
|
| 20 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
| 21 |
+
nn.BatchNorm2d(num_features=64),
|
| 22 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 23 |
+
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# res blocks
|
| 27 |
+
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
| 28 |
+
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
| 29 |
+
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
| 30 |
+
|
| 31 |
+
# pool block
|
| 32 |
+
self.pool_block = nn.Sequential(
|
| 33 |
+
nn.BatchNorm2d(num_features=256),
|
| 34 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 35 |
+
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
| 36 |
+
nn.Dropout(p=0.2),
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# maxpool layers (for auxiliary network inputs)
|
| 40 |
+
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
| 41 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
| 42 |
+
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
| 43 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
| 44 |
+
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
| 45 |
+
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
| 46 |
+
|
| 47 |
+
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
| 48 |
+
self.detector_conv = nn.Sequential(
|
| 49 |
+
nn.Conv2d(640, 256, 1, bias=False),
|
| 50 |
+
nn.BatchNorm2d(256),
|
| 51 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 52 |
+
nn.Dropout(p=0.2),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 56 |
+
self.bilstm_classifier = nn.LSTM(
|
| 57 |
+
input_size=512, hidden_size=256,
|
| 58 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 59 |
+
|
| 60 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 61 |
+
self.bilstm_detector = nn.LSTM(
|
| 62 |
+
input_size=512, hidden_size=256,
|
| 63 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 64 |
+
|
| 65 |
+
# input: (b * 31, 512)
|
| 66 |
+
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
| 67 |
+
|
| 68 |
+
# input: (b * 31, 512)
|
| 69 |
+
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
| 70 |
+
|
| 71 |
+
# initialize weights
|
| 72 |
+
self.apply(self.init_weights)
|
| 73 |
+
|
| 74 |
+
def get_feature_GAN(self, x):
|
| 75 |
+
seq_len = x.shape[-2]
|
| 76 |
+
x = x.float().transpose(-1, -2)
|
| 77 |
+
|
| 78 |
+
convblock_out = self.conv_block(x)
|
| 79 |
+
|
| 80 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 81 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 82 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 83 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 84 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 85 |
+
|
| 86 |
+
return poolblock_out.transpose(-1, -2)
|
| 87 |
+
|
| 88 |
+
def get_feature(self, x):
|
| 89 |
+
seq_len = x.shape[-2]
|
| 90 |
+
x = x.float().transpose(-1, -2)
|
| 91 |
+
|
| 92 |
+
convblock_out = self.conv_block(x)
|
| 93 |
+
|
| 94 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 95 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 96 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 97 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 98 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 99 |
+
|
| 100 |
+
return self.pool_block[2](poolblock_out)
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
"""
|
| 104 |
+
Returns:
|
| 105 |
+
classification_prediction, detection_prediction
|
| 106 |
+
sizes: (b, 31, 722), (b, 31, 2)
|
| 107 |
+
"""
|
| 108 |
+
###############################
|
| 109 |
+
# forward pass for classifier #
|
| 110 |
+
###############################
|
| 111 |
+
seq_len = x.shape[-1]
|
| 112 |
+
x = x.float().transpose(-1, -2)
|
| 113 |
+
|
| 114 |
+
convblock_out = self.conv_block(x)
|
| 115 |
+
|
| 116 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 117 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 118 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 122 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 123 |
+
GAN_feature = poolblock_out.transpose(-1, -2)
|
| 124 |
+
poolblock_out = self.pool_block[2](poolblock_out)
|
| 125 |
+
|
| 126 |
+
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
| 127 |
+
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
| 128 |
+
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
| 129 |
+
|
| 130 |
+
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
| 131 |
+
classifier_out = self.classifier(classifier_out)
|
| 132 |
+
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
| 133 |
+
|
| 134 |
+
# sizes: (b, 31, 722), (b, 31, 2)
|
| 135 |
+
# classifier output consists of predicted pitch classes per frame
|
| 136 |
+
# detector output consists of: (isvoice, notvoice) estimates per frame
|
| 137 |
+
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def init_weights(m):
|
| 141 |
+
if isinstance(m, nn.Linear):
|
| 142 |
+
nn.init.kaiming_uniform_(m.weight)
|
| 143 |
+
if m.bias is not None:
|
| 144 |
+
nn.init.constant_(m.bias, 0)
|
| 145 |
+
elif isinstance(m, nn.Conv2d):
|
| 146 |
+
nn.init.xavier_normal_(m.weight)
|
| 147 |
+
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
| 148 |
+
for p in m.parameters():
|
| 149 |
+
if p.data is None:
|
| 150 |
+
continue
|
| 151 |
+
|
| 152 |
+
if len(p.shape) >= 2:
|
| 153 |
+
nn.init.orthogonal_(p.data)
|
| 154 |
+
else:
|
| 155 |
+
nn.init.normal_(p.data)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class ResBlock(nn.Module):
|
| 159 |
+
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.downsample = in_channels != out_channels
|
| 162 |
+
|
| 163 |
+
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
| 164 |
+
self.pre_conv = nn.Sequential(
|
| 165 |
+
nn.BatchNorm2d(num_features=in_channels),
|
| 166 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 167 |
+
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# conv layers
|
| 171 |
+
self.conv = nn.Sequential(
|
| 172 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
| 173 |
+
kernel_size=3, padding=1, bias=False),
|
| 174 |
+
nn.BatchNorm2d(out_channels),
|
| 175 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 176 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# 1 x 1 convolution layer to match the feature dimensions
|
| 180 |
+
self.conv1by1 = None
|
| 181 |
+
if self.downsample:
|
| 182 |
+
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
x = self.pre_conv(x)
|
| 186 |
+
if self.downsample:
|
| 187 |
+
x = self.conv(x) + self.conv1by1(x)
|
| 188 |
+
else:
|
| 189 |
+
x = self.conv(x) + x
|
| 190 |
+
return x
|
Utils/PLBERT/config.yml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "Checkpoint"
|
| 2 |
+
mixed_precision: "fp16"
|
| 3 |
+
data_folder: "wikipedia_20220301.en.processed"
|
| 4 |
+
batch_size: 192
|
| 5 |
+
save_interval: 5000
|
| 6 |
+
log_interval: 10
|
| 7 |
+
num_process: 1 # number of GPUs
|
| 8 |
+
num_steps: 1000000
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
tokenizer: "transfo-xl-wt103"
|
| 12 |
+
token_separator: " " # token used for phoneme separator (space)
|
| 13 |
+
token_mask: "M" # token used for phoneme mask (M)
|
| 14 |
+
word_separator: 3039 # token used for word separator (<formula>)
|
| 15 |
+
token_maps: "token_maps.pkl" # token map path
|
| 16 |
+
|
| 17 |
+
max_mel_length: 512 # max phoneme length
|
| 18 |
+
|
| 19 |
+
word_mask_prob: 0.15 # probability to mask the entire word
|
| 20 |
+
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
| 21 |
+
replace_prob: 0.2 # probablity to replace phonemes
|
| 22 |
+
|
| 23 |
+
model_params:
|
| 24 |
+
vocab_size: 178
|
| 25 |
+
hidden_size: 768
|
| 26 |
+
num_attention_heads: 12
|
| 27 |
+
intermediate_size: 2048
|
| 28 |
+
max_position_embeddings: 512
|
| 29 |
+
num_hidden_layers: 12
|
| 30 |
+
dropout: 0.1
|
Utils/PLBERT/step_1000000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
| 3 |
+
size 25185187
|
Utils/PLBERT/util.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertConfig, AlbertModel
|
| 5 |
+
|
| 6 |
+
class CustomAlbert(AlbertModel):
|
| 7 |
+
def forward(self, *args, **kwargs):
|
| 8 |
+
# Call the original forward method
|
| 9 |
+
outputs = super().forward(*args, **kwargs)
|
| 10 |
+
|
| 11 |
+
# Only return the last_hidden_state
|
| 12 |
+
return outputs.last_hidden_state
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_plbert(log_dir):
|
| 16 |
+
config_path = os.path.join(log_dir, "config.yml")
|
| 17 |
+
plbert_config = yaml.safe_load(open(config_path))
|
| 18 |
+
|
| 19 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
| 20 |
+
bert = CustomAlbert(albert_base_configuration)
|
| 21 |
+
|
| 22 |
+
files = os.listdir(log_dir)
|
| 23 |
+
ckpts = []
|
| 24 |
+
for f in os.listdir(log_dir):
|
| 25 |
+
if f.startswith("step_"): ckpts.append(f)
|
| 26 |
+
|
| 27 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
| 28 |
+
iters = sorted(iters)[-1]
|
| 29 |
+
|
| 30 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".pth", map_location='cpu')
|
| 31 |
+
state_dict = checkpoint['net']
|
| 32 |
+
from collections import OrderedDict
|
| 33 |
+
new_state_dict = OrderedDict()
|
| 34 |
+
for k, v in state_dict.items():
|
| 35 |
+
name = k[7:] # remove `module.`
|
| 36 |
+
if name.startswith('encoder.'):
|
| 37 |
+
name = name[8:] # remove `encoder.`
|
| 38 |
+
new_state_dict[name] = v
|
| 39 |
+
del new_state_dict["embeddings.position_ids"]
|
| 40 |
+
bert.load_state_dict(new_state_dict, strict=False)
|
| 41 |
+
|
| 42 |
+
return bert
|
Utils/Utils2/ASR/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/Utils2/ASR/config.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "logs/20201006"
|
| 2 |
+
save_freq: 5
|
| 3 |
+
device: "cuda"
|
| 4 |
+
epochs: 180
|
| 5 |
+
batch_size: 64
|
| 6 |
+
pretrained_model: ""
|
| 7 |
+
train_data: "ASRDataset/train_list.txt"
|
| 8 |
+
val_data: "ASRDataset/val_list.txt"
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
data_augmentation: false
|
| 12 |
+
|
| 13 |
+
preprocess_parasm:
|
| 14 |
+
sr: 24000
|
| 15 |
+
spect_params:
|
| 16 |
+
n_fft: 2048
|
| 17 |
+
win_length: 1200
|
| 18 |
+
hop_length: 300
|
| 19 |
+
mel_params:
|
| 20 |
+
n_mels: 80
|
| 21 |
+
|
| 22 |
+
model_params:
|
| 23 |
+
input_dim: 80
|
| 24 |
+
hidden_dim: 256
|
| 25 |
+
n_token: 178
|
| 26 |
+
token_embedding_dim: 512
|
| 27 |
+
|
| 28 |
+
optimizer_params:
|
| 29 |
+
lr: 0.0005
|
Utils/Utils2/ASR/epoch_00080.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
| 3 |
+
size 94552811
|
Utils/Utils2/ASR/layers.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from typing import Optional, Any
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torchaudio
|
| 8 |
+
import torchaudio.functional as audio_F
|
| 9 |
+
|
| 10 |
+
import random
|
| 11 |
+
random.seed(0)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_activation_fn(activ):
|
| 15 |
+
if activ == 'relu':
|
| 16 |
+
return nn.ReLU()
|
| 17 |
+
elif activ == 'lrelu':
|
| 18 |
+
return nn.LeakyReLU(0.2)
|
| 19 |
+
elif activ == 'swish':
|
| 20 |
+
return lambda x: x*torch.sigmoid(x)
|
| 21 |
+
else:
|
| 22 |
+
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
| 23 |
+
|
| 24 |
+
class LinearNorm(torch.nn.Module):
|
| 25 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 26 |
+
super(LinearNorm, self).__init__()
|
| 27 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 28 |
+
|
| 29 |
+
torch.nn.init.xavier_uniform_(
|
| 30 |
+
self.linear_layer.weight,
|
| 31 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return self.linear_layer(x)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ConvNorm(torch.nn.Module):
|
| 38 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
| 39 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 40 |
+
super(ConvNorm, self).__init__()
|
| 41 |
+
if padding is None:
|
| 42 |
+
assert(kernel_size % 2 == 1)
|
| 43 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
| 44 |
+
|
| 45 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
| 46 |
+
kernel_size=kernel_size, stride=stride,
|
| 47 |
+
padding=padding, dilation=dilation,
|
| 48 |
+
bias=bias)
|
| 49 |
+
|
| 50 |
+
torch.nn.init.xavier_uniform_(
|
| 51 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 52 |
+
|
| 53 |
+
def forward(self, signal):
|
| 54 |
+
conv_signal = self.conv(signal)
|
| 55 |
+
return conv_signal
|
| 56 |
+
|
| 57 |
+
class CausualConv(nn.Module):
|
| 58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 59 |
+
super(CausualConv, self).__init__()
|
| 60 |
+
if padding is None:
|
| 61 |
+
assert(kernel_size % 2 == 1)
|
| 62 |
+
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
| 63 |
+
else:
|
| 64 |
+
self.padding = padding * 2
|
| 65 |
+
self.conv = nn.Conv1d(in_channels, out_channels,
|
| 66 |
+
kernel_size=kernel_size, stride=stride,
|
| 67 |
+
padding=self.padding,
|
| 68 |
+
dilation=dilation,
|
| 69 |
+
bias=bias)
|
| 70 |
+
|
| 71 |
+
torch.nn.init.xavier_uniform_(
|
| 72 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
x = self.conv(x)
|
| 76 |
+
x = x[:, :, :-self.padding]
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
class CausualBlock(nn.Module):
|
| 80 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
| 81 |
+
super(CausualBlock, self).__init__()
|
| 82 |
+
self.blocks = nn.ModuleList([
|
| 83 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 84 |
+
for i in range(n_conv)])
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
for block in self.blocks:
|
| 88 |
+
res = x
|
| 89 |
+
x = block(x)
|
| 90 |
+
x += res
|
| 91 |
+
return x
|
| 92 |
+
|
| 93 |
+
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
| 94 |
+
layers = [
|
| 95 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 96 |
+
_get_activation_fn(activ),
|
| 97 |
+
nn.BatchNorm1d(hidden_dim),
|
| 98 |
+
nn.Dropout(p=dropout_p),
|
| 99 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 100 |
+
_get_activation_fn(activ),
|
| 101 |
+
nn.Dropout(p=dropout_p)
|
| 102 |
+
]
|
| 103 |
+
return nn.Sequential(*layers)
|
| 104 |
+
|
| 105 |
+
class ConvBlock(nn.Module):
|
| 106 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self._n_groups = 8
|
| 109 |
+
self.blocks = nn.ModuleList([
|
| 110 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 111 |
+
for i in range(n_conv)])
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
for block in self.blocks:
|
| 116 |
+
res = x
|
| 117 |
+
x = block(x)
|
| 118 |
+
x += res
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
| 122 |
+
layers = [
|
| 123 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 124 |
+
_get_activation_fn(activ),
|
| 125 |
+
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
| 126 |
+
nn.Dropout(p=dropout_p),
|
| 127 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 128 |
+
_get_activation_fn(activ),
|
| 129 |
+
nn.Dropout(p=dropout_p)
|
| 130 |
+
]
|
| 131 |
+
return nn.Sequential(*layers)
|
| 132 |
+
|
| 133 |
+
class LocationLayer(nn.Module):
|
| 134 |
+
def __init__(self, attention_n_filters, attention_kernel_size,
|
| 135 |
+
attention_dim):
|
| 136 |
+
super(LocationLayer, self).__init__()
|
| 137 |
+
padding = int((attention_kernel_size - 1) / 2)
|
| 138 |
+
self.location_conv = ConvNorm(2, attention_n_filters,
|
| 139 |
+
kernel_size=attention_kernel_size,
|
| 140 |
+
padding=padding, bias=False, stride=1,
|
| 141 |
+
dilation=1)
|
| 142 |
+
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
| 143 |
+
bias=False, w_init_gain='tanh')
|
| 144 |
+
|
| 145 |
+
def forward(self, attention_weights_cat):
|
| 146 |
+
processed_attention = self.location_conv(attention_weights_cat)
|
| 147 |
+
processed_attention = processed_attention.transpose(1, 2)
|
| 148 |
+
processed_attention = self.location_dense(processed_attention)
|
| 149 |
+
return processed_attention
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Attention(nn.Module):
|
| 153 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 154 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 155 |
+
super(Attention, self).__init__()
|
| 156 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 157 |
+
bias=False, w_init_gain='tanh')
|
| 158 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 159 |
+
w_init_gain='tanh')
|
| 160 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 161 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 162 |
+
attention_location_kernel_size,
|
| 163 |
+
attention_dim)
|
| 164 |
+
self.score_mask_value = -float("inf")
|
| 165 |
+
|
| 166 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 167 |
+
attention_weights_cat):
|
| 168 |
+
"""
|
| 169 |
+
PARAMS
|
| 170 |
+
------
|
| 171 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 172 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 173 |
+
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
| 174 |
+
RETURNS
|
| 175 |
+
-------
|
| 176 |
+
alignment (batch, max_time)
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 180 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 181 |
+
energies = self.v(torch.tanh(
|
| 182 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 183 |
+
|
| 184 |
+
energies = energies.squeeze(-1)
|
| 185 |
+
return energies
|
| 186 |
+
|
| 187 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 188 |
+
attention_weights_cat, mask):
|
| 189 |
+
"""
|
| 190 |
+
PARAMS
|
| 191 |
+
------
|
| 192 |
+
attention_hidden_state: attention rnn last output
|
| 193 |
+
memory: encoder outputs
|
| 194 |
+
processed_memory: processed encoder outputs
|
| 195 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 196 |
+
mask: binary mask for padded data
|
| 197 |
+
"""
|
| 198 |
+
alignment = self.get_alignment_energies(
|
| 199 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 200 |
+
|
| 201 |
+
if mask is not None:
|
| 202 |
+
alignment.data.masked_fill_(mask, self.score_mask_value)
|
| 203 |
+
|
| 204 |
+
attention_weights = F.softmax(alignment, dim=1)
|
| 205 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 206 |
+
attention_context = attention_context.squeeze(1)
|
| 207 |
+
|
| 208 |
+
return attention_context, attention_weights
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ForwardAttentionV2(nn.Module):
|
| 212 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 213 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 214 |
+
super(ForwardAttentionV2, self).__init__()
|
| 215 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 216 |
+
bias=False, w_init_gain='tanh')
|
| 217 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 218 |
+
w_init_gain='tanh')
|
| 219 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 220 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 221 |
+
attention_location_kernel_size,
|
| 222 |
+
attention_dim)
|
| 223 |
+
self.score_mask_value = -float(1e20)
|
| 224 |
+
|
| 225 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 226 |
+
attention_weights_cat):
|
| 227 |
+
"""
|
| 228 |
+
PARAMS
|
| 229 |
+
------
|
| 230 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 231 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 232 |
+
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
| 233 |
+
RETURNS
|
| 234 |
+
-------
|
| 235 |
+
alignment (batch, max_time)
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 239 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 240 |
+
energies = self.v(torch.tanh(
|
| 241 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 242 |
+
|
| 243 |
+
energies = energies.squeeze(-1)
|
| 244 |
+
return energies
|
| 245 |
+
|
| 246 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 247 |
+
attention_weights_cat, mask, log_alpha):
|
| 248 |
+
"""
|
| 249 |
+
PARAMS
|
| 250 |
+
------
|
| 251 |
+
attention_hidden_state: attention rnn last output
|
| 252 |
+
memory: encoder outputs
|
| 253 |
+
processed_memory: processed encoder outputs
|
| 254 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 255 |
+
mask: binary mask for padded data
|
| 256 |
+
"""
|
| 257 |
+
log_energy = self.get_alignment_energies(
|
| 258 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 259 |
+
|
| 260 |
+
#log_energy =
|
| 261 |
+
|
| 262 |
+
if mask is not None:
|
| 263 |
+
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
| 264 |
+
|
| 265 |
+
#attention_weights = F.softmax(alignment, dim=1)
|
| 266 |
+
|
| 267 |
+
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
| 268 |
+
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
| 269 |
+
|
| 270 |
+
#log_total_score = log_alpha + content_score
|
| 271 |
+
|
| 272 |
+
#previous_attention_weights = attention_weights_cat[:,0,:]
|
| 273 |
+
|
| 274 |
+
log_alpha_shift_padded = []
|
| 275 |
+
max_time = log_energy.size(1)
|
| 276 |
+
for sft in range(2):
|
| 277 |
+
shifted = log_alpha[:,:max_time-sft]
|
| 278 |
+
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
| 279 |
+
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
| 280 |
+
|
| 281 |
+
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
| 282 |
+
|
| 283 |
+
log_alpha_new = biased + log_energy
|
| 284 |
+
|
| 285 |
+
attention_weights = F.softmax(log_alpha_new, dim=1)
|
| 286 |
+
|
| 287 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 288 |
+
attention_context = attention_context.squeeze(1)
|
| 289 |
+
|
| 290 |
+
return attention_context, attention_weights, log_alpha_new
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class PhaseShuffle2d(nn.Module):
|
| 294 |
+
def __init__(self, n=2):
|
| 295 |
+
super(PhaseShuffle2d, self).__init__()
|
| 296 |
+
self.n = n
|
| 297 |
+
self.random = random.Random(1)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, move=None):
|
| 300 |
+
# x.size = (B, C, M, L)
|
| 301 |
+
if move is None:
|
| 302 |
+
move = self.random.randint(-self.n, self.n)
|
| 303 |
+
|
| 304 |
+
if move == 0:
|
| 305 |
+
return x
|
| 306 |
+
else:
|
| 307 |
+
left = x[:, :, :, :move]
|
| 308 |
+
right = x[:, :, :, move:]
|
| 309 |
+
shuffled = torch.cat([right, left], dim=3)
|
| 310 |
+
return shuffled
|
| 311 |
+
|
| 312 |
+
class PhaseShuffle1d(nn.Module):
|
| 313 |
+
def __init__(self, n=2):
|
| 314 |
+
super(PhaseShuffle1d, self).__init__()
|
| 315 |
+
self.n = n
|
| 316 |
+
self.random = random.Random(1)
|
| 317 |
+
|
| 318 |
+
def forward(self, x, move=None):
|
| 319 |
+
# x.size = (B, C, M, L)
|
| 320 |
+
if move is None:
|
| 321 |
+
move = self.random.randint(-self.n, self.n)
|
| 322 |
+
|
| 323 |
+
if move == 0:
|
| 324 |
+
return x
|
| 325 |
+
else:
|
| 326 |
+
left = x[:, :, :move]
|
| 327 |
+
right = x[:, :, move:]
|
| 328 |
+
shuffled = torch.cat([right, left], dim=2)
|
| 329 |
+
|
| 330 |
+
return shuffled
|
| 331 |
+
|
| 332 |
+
class MFCC(nn.Module):
|
| 333 |
+
def __init__(self, n_mfcc=40, n_mels=80):
|
| 334 |
+
super(MFCC, self).__init__()
|
| 335 |
+
self.n_mfcc = n_mfcc
|
| 336 |
+
self.n_mels = n_mels
|
| 337 |
+
self.norm = 'ortho'
|
| 338 |
+
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
| 339 |
+
self.register_buffer('dct_mat', dct_mat)
|
| 340 |
+
|
| 341 |
+
def forward(self, mel_specgram):
|
| 342 |
+
if len(mel_specgram.shape) == 2:
|
| 343 |
+
mel_specgram = mel_specgram.unsqueeze(0)
|
| 344 |
+
unsqueezed = True
|
| 345 |
+
else:
|
| 346 |
+
unsqueezed = False
|
| 347 |
+
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
| 348 |
+
# -> (channel, time, n_mfcc).tranpose(...)
|
| 349 |
+
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
# unpack batch
|
| 352 |
+
if unsqueezed:
|
| 353 |
+
mfcc = mfcc.squeeze(0)
|
| 354 |
+
return mfcc
|
Utils/Utils2/ASR/models.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import TransformerEncoder
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
| 7 |
+
|
| 8 |
+
class ASRCNN(nn.Module):
|
| 9 |
+
def __init__(self,
|
| 10 |
+
input_dim=80,
|
| 11 |
+
hidden_dim=256,
|
| 12 |
+
n_token=35,
|
| 13 |
+
n_layers=6,
|
| 14 |
+
token_embedding_dim=256,
|
| 15 |
+
|
| 16 |
+
):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.n_token = n_token
|
| 19 |
+
self.n_down = 1
|
| 20 |
+
self.to_mfcc = MFCC()
|
| 21 |
+
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
| 22 |
+
self.cnns = nn.Sequential(
|
| 23 |
+
*[nn.Sequential(
|
| 24 |
+
ConvBlock(hidden_dim),
|
| 25 |
+
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
| 26 |
+
) for n in range(n_layers)])
|
| 27 |
+
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
| 28 |
+
self.ctc_linear = nn.Sequential(
|
| 29 |
+
LinearNorm(hidden_dim//2, hidden_dim),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
LinearNorm(hidden_dim, n_token))
|
| 32 |
+
self.asr_s2s = ASRS2S(
|
| 33 |
+
embedding_dim=token_embedding_dim,
|
| 34 |
+
hidden_dim=hidden_dim//2,
|
| 35 |
+
n_token=n_token)
|
| 36 |
+
|
| 37 |
+
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
| 38 |
+
x = self.to_mfcc(x)
|
| 39 |
+
x = self.init_cnn(x)
|
| 40 |
+
x = self.cnns(x)
|
| 41 |
+
x = self.projection(x)
|
| 42 |
+
x = x.transpose(1, 2)
|
| 43 |
+
ctc_logit = self.ctc_linear(x)
|
| 44 |
+
if text_input is not None:
|
| 45 |
+
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
| 46 |
+
return ctc_logit, s2s_logit, s2s_attn
|
| 47 |
+
else:
|
| 48 |
+
return ctc_logit
|
| 49 |
+
|
| 50 |
+
def get_feature(self, x):
|
| 51 |
+
x = self.to_mfcc(x.squeeze(1))
|
| 52 |
+
x = self.init_cnn(x)
|
| 53 |
+
x = self.cnns(x)
|
| 54 |
+
x = self.projection(x)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
def length_to_mask(self, lengths):
|
| 58 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 59 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
| 60 |
+
return mask
|
| 61 |
+
|
| 62 |
+
def get_future_mask(self, out_length, unmask_future_steps=0):
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
out_length (int): returned mask shape is (out_length, out_length).
|
| 66 |
+
unmask_futre_steps (int): unmasking future step size.
|
| 67 |
+
Return:
|
| 68 |
+
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
| 69 |
+
"""
|
| 70 |
+
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
| 71 |
+
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
| 72 |
+
return mask
|
| 73 |
+
|
| 74 |
+
class ASRS2S(nn.Module):
|
| 75 |
+
def __init__(self,
|
| 76 |
+
embedding_dim=256,
|
| 77 |
+
hidden_dim=512,
|
| 78 |
+
n_location_filters=32,
|
| 79 |
+
location_kernel_size=63,
|
| 80 |
+
n_token=40):
|
| 81 |
+
super(ASRS2S, self).__init__()
|
| 82 |
+
self.embedding = nn.Embedding(n_token, embedding_dim)
|
| 83 |
+
val_range = math.sqrt(6 / hidden_dim)
|
| 84 |
+
self.embedding.weight.data.uniform_(-val_range, val_range)
|
| 85 |
+
|
| 86 |
+
self.decoder_rnn_dim = hidden_dim
|
| 87 |
+
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
| 88 |
+
self.attention_layer = Attention(
|
| 89 |
+
self.decoder_rnn_dim,
|
| 90 |
+
hidden_dim,
|
| 91 |
+
hidden_dim,
|
| 92 |
+
n_location_filters,
|
| 93 |
+
location_kernel_size
|
| 94 |
+
)
|
| 95 |
+
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
| 96 |
+
self.project_to_hidden = nn.Sequential(
|
| 97 |
+
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
| 98 |
+
nn.Tanh())
|
| 99 |
+
self.sos = 1
|
| 100 |
+
self.eos = 2
|
| 101 |
+
|
| 102 |
+
def initialize_decoder_states(self, memory, mask):
|
| 103 |
+
"""
|
| 104 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 105 |
+
"""
|
| 106 |
+
B, L, H = memory.shape
|
| 107 |
+
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 108 |
+
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 109 |
+
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
| 110 |
+
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
| 111 |
+
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
| 112 |
+
self.memory = memory
|
| 113 |
+
self.processed_memory = self.attention_layer.memory_layer(memory)
|
| 114 |
+
self.mask = mask
|
| 115 |
+
self.unk_index = 3
|
| 116 |
+
self.random_mask = 0.1
|
| 117 |
+
|
| 118 |
+
def forward(self, memory, memory_mask, text_input):
|
| 119 |
+
"""
|
| 120 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 121 |
+
moemory_mask.shape = (B, L, )
|
| 122 |
+
texts_input.shape = (B, T)
|
| 123 |
+
"""
|
| 124 |
+
self.initialize_decoder_states(memory, memory_mask)
|
| 125 |
+
# text random mask
|
| 126 |
+
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
| 127 |
+
_text_input = text_input.clone()
|
| 128 |
+
_text_input.masked_fill_(random_mask, self.unk_index)
|
| 129 |
+
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
| 130 |
+
start_embedding = self.embedding(
|
| 131 |
+
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
| 132 |
+
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
| 133 |
+
|
| 134 |
+
hidden_outputs, logit_outputs, alignments = [], [], []
|
| 135 |
+
while len(hidden_outputs) < decoder_inputs.size(0):
|
| 136 |
+
|
| 137 |
+
decoder_input = decoder_inputs[len(hidden_outputs)]
|
| 138 |
+
hidden, logit, attention_weights = self.decode(decoder_input)
|
| 139 |
+
hidden_outputs += [hidden]
|
| 140 |
+
logit_outputs += [logit]
|
| 141 |
+
alignments += [attention_weights]
|
| 142 |
+
|
| 143 |
+
hidden_outputs, logit_outputs, alignments = \
|
| 144 |
+
self.parse_decoder_outputs(
|
| 145 |
+
hidden_outputs, logit_outputs, alignments)
|
| 146 |
+
|
| 147 |
+
return hidden_outputs, logit_outputs, alignments
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def decode(self, decoder_input):
|
| 151 |
+
|
| 152 |
+
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
| 153 |
+
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
| 154 |
+
cell_input,
|
| 155 |
+
(self.decoder_hidden, self.decoder_cell))
|
| 156 |
+
|
| 157 |
+
attention_weights_cat = torch.cat(
|
| 158 |
+
(self.attention_weights.unsqueeze(1),
|
| 159 |
+
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
| 160 |
+
|
| 161 |
+
self.attention_context, self.attention_weights = self.attention_layer(
|
| 162 |
+
self.decoder_hidden,
|
| 163 |
+
self.memory,
|
| 164 |
+
self.processed_memory,
|
| 165 |
+
attention_weights_cat,
|
| 166 |
+
self.mask)
|
| 167 |
+
|
| 168 |
+
self.attention_weights_cum += self.attention_weights
|
| 169 |
+
|
| 170 |
+
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
| 171 |
+
hidden = self.project_to_hidden(hidden_and_context)
|
| 172 |
+
|
| 173 |
+
# dropout to increasing g
|
| 174 |
+
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
| 175 |
+
|
| 176 |
+
return hidden, logit, self.attention_weights
|
| 177 |
+
|
| 178 |
+
def parse_decoder_outputs(self, hidden, logit, alignments):
|
| 179 |
+
|
| 180 |
+
# -> [B, T_out + 1, max_time]
|
| 181 |
+
alignments = torch.stack(alignments).transpose(0,1)
|
| 182 |
+
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
| 183 |
+
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
| 184 |
+
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
| 185 |
+
|
| 186 |
+
return hidden, logit, alignments
|
Utils/Utils2/JDC/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/Utils2/JDC/bst.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
| 3 |
+
size 21029926
|
Utils/Utils2/JDC/model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of model from:
|
| 3 |
+
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
| 4 |
+
Convolutional Recurrent Neural Networks" (2019)
|
| 5 |
+
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
class JDCNet(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
Joint Detection and Classification Network model for singing voice melody.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.num_class = num_class
|
| 17 |
+
|
| 18 |
+
# input = (b, 1, 31, 513), b = batch size
|
| 19 |
+
self.conv_block = nn.Sequential(
|
| 20 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
| 21 |
+
nn.BatchNorm2d(num_features=64),
|
| 22 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 23 |
+
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# res blocks
|
| 27 |
+
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
| 28 |
+
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
| 29 |
+
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
| 30 |
+
|
| 31 |
+
# pool block
|
| 32 |
+
self.pool_block = nn.Sequential(
|
| 33 |
+
nn.BatchNorm2d(num_features=256),
|
| 34 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 35 |
+
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
| 36 |
+
nn.Dropout(p=0.2),
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# maxpool layers (for auxiliary network inputs)
|
| 40 |
+
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
| 41 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
| 42 |
+
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
| 43 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
| 44 |
+
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
| 45 |
+
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
| 46 |
+
|
| 47 |
+
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
| 48 |
+
self.detector_conv = nn.Sequential(
|
| 49 |
+
nn.Conv2d(640, 256, 1, bias=False),
|
| 50 |
+
nn.BatchNorm2d(256),
|
| 51 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 52 |
+
nn.Dropout(p=0.2),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 56 |
+
self.bilstm_classifier = nn.LSTM(
|
| 57 |
+
input_size=512, hidden_size=256,
|
| 58 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 59 |
+
|
| 60 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 61 |
+
self.bilstm_detector = nn.LSTM(
|
| 62 |
+
input_size=512, hidden_size=256,
|
| 63 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 64 |
+
|
| 65 |
+
# input: (b * 31, 512)
|
| 66 |
+
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
| 67 |
+
|
| 68 |
+
# input: (b * 31, 512)
|
| 69 |
+
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
| 70 |
+
|
| 71 |
+
# initialize weights
|
| 72 |
+
self.apply(self.init_weights)
|
| 73 |
+
|
| 74 |
+
def get_feature_GAN(self, x):
|
| 75 |
+
seq_len = x.shape[-2]
|
| 76 |
+
x = x.float().transpose(-1, -2)
|
| 77 |
+
|
| 78 |
+
convblock_out = self.conv_block(x)
|
| 79 |
+
|
| 80 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 81 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 82 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 83 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 84 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 85 |
+
|
| 86 |
+
return poolblock_out.transpose(-1, -2)
|
| 87 |
+
|
| 88 |
+
def get_feature(self, x):
|
| 89 |
+
seq_len = x.shape[-2]
|
| 90 |
+
x = x.float().transpose(-1, -2)
|
| 91 |
+
|
| 92 |
+
convblock_out = self.conv_block(x)
|
| 93 |
+
|
| 94 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 95 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 96 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 97 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 98 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 99 |
+
|
| 100 |
+
return self.pool_block[2](poolblock_out)
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
"""
|
| 104 |
+
Returns:
|
| 105 |
+
classification_prediction, detection_prediction
|
| 106 |
+
sizes: (b, 31, 722), (b, 31, 2)
|
| 107 |
+
"""
|
| 108 |
+
###############################
|
| 109 |
+
# forward pass for classifier #
|
| 110 |
+
###############################
|
| 111 |
+
seq_len = x.shape[-1]
|
| 112 |
+
x = x.float().transpose(-1, -2)
|
| 113 |
+
|
| 114 |
+
convblock_out = self.conv_block(x)
|
| 115 |
+
|
| 116 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 117 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 118 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 122 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 123 |
+
GAN_feature = poolblock_out.transpose(-1, -2)
|
| 124 |
+
poolblock_out = self.pool_block[2](poolblock_out)
|
| 125 |
+
|
| 126 |
+
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
| 127 |
+
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
| 128 |
+
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
| 129 |
+
|
| 130 |
+
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
| 131 |
+
classifier_out = self.classifier(classifier_out)
|
| 132 |
+
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
| 133 |
+
|
| 134 |
+
# sizes: (b, 31, 722), (b, 31, 2)
|
| 135 |
+
# classifier output consists of predicted pitch classes per frame
|
| 136 |
+
# detector output consists of: (isvoice, notvoice) estimates per frame
|
| 137 |
+
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def init_weights(m):
|
| 141 |
+
if isinstance(m, nn.Linear):
|
| 142 |
+
nn.init.kaiming_uniform_(m.weight)
|
| 143 |
+
if m.bias is not None:
|
| 144 |
+
nn.init.constant_(m.bias, 0)
|
| 145 |
+
elif isinstance(m, nn.Conv2d):
|
| 146 |
+
nn.init.xavier_normal_(m.weight)
|
| 147 |
+
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
| 148 |
+
for p in m.parameters():
|
| 149 |
+
if p.data is None:
|
| 150 |
+
continue
|
| 151 |
+
|
| 152 |
+
if len(p.shape) >= 2:
|
| 153 |
+
nn.init.orthogonal_(p.data)
|
| 154 |
+
else:
|
| 155 |
+
nn.init.normal_(p.data)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class ResBlock(nn.Module):
|
| 159 |
+
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.downsample = in_channels != out_channels
|
| 162 |
+
|
| 163 |
+
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
| 164 |
+
self.pre_conv = nn.Sequential(
|
| 165 |
+
nn.BatchNorm2d(num_features=in_channels),
|
| 166 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 167 |
+
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# conv layers
|
| 171 |
+
self.conv = nn.Sequential(
|
| 172 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
| 173 |
+
kernel_size=3, padding=1, bias=False),
|
| 174 |
+
nn.BatchNorm2d(out_channels),
|
| 175 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 176 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# 1 x 1 convolution layer to match the feature dimensions
|
| 180 |
+
self.conv1by1 = None
|
| 181 |
+
if self.downsample:
|
| 182 |
+
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
x = self.pre_conv(x)
|
| 186 |
+
if self.downsample:
|
| 187 |
+
x = self.conv(x) + self.conv1by1(x)
|
| 188 |
+
else:
|
| 189 |
+
x = self.conv(x) + x
|
| 190 |
+
return x
|
Utils/Utils2/PLBERT/config.yml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "Checkpoint"
|
| 2 |
+
mixed_precision: "fp16"
|
| 3 |
+
data_folder: "wikipedia_20220301.en.processed"
|
| 4 |
+
batch_size: 192
|
| 5 |
+
save_interval: 5000
|
| 6 |
+
log_interval: 10
|
| 7 |
+
num_process: 1 # number of GPUs
|
| 8 |
+
num_steps: 1000000
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
tokenizer: "transfo-xl-wt103"
|
| 12 |
+
token_separator: " " # token used for phoneme separator (space)
|
| 13 |
+
token_mask: "M" # token used for phoneme mask (M)
|
| 14 |
+
word_separator: 3039 # token used for word separator (<formula>)
|
| 15 |
+
token_maps: "token_maps.pkl" # token map path
|
| 16 |
+
|
| 17 |
+
max_mel_length: 512 # max phoneme length
|
| 18 |
+
|
| 19 |
+
word_mask_prob: 0.15 # probability to mask the entire word
|
| 20 |
+
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
| 21 |
+
replace_prob: 0.2 # probablity to replace phonemes
|
| 22 |
+
|
| 23 |
+
model_params:
|
| 24 |
+
vocab_size: 178
|
| 25 |
+
hidden_size: 768
|
| 26 |
+
num_attention_heads: 12
|
| 27 |
+
intermediate_size: 2048
|
| 28 |
+
max_position_embeddings: 512
|
| 29 |
+
num_hidden_layers: 12
|
| 30 |
+
dropout: 0.1
|
Utils/Utils2/PLBERT/step_1000000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
| 3 |
+
size 25185187
|
Utils/Utils2/PLBERT/util.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertConfig, AlbertModel
|
| 5 |
+
|
| 6 |
+
class CustomAlbert(AlbertModel):
|
| 7 |
+
def forward(self, *args, **kwargs):
|
| 8 |
+
# Call the original forward method
|
| 9 |
+
outputs = super().forward(*args, **kwargs)
|
| 10 |
+
|
| 11 |
+
# Only return the last_hidden_state
|
| 12 |
+
return outputs.last_hidden_state
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_plbert(log_dir):
|
| 16 |
+
config_path = os.path.join(log_dir, "config.yml")
|
| 17 |
+
plbert_config = yaml.safe_load(open(config_path))
|
| 18 |
+
|
| 19 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
| 20 |
+
bert = CustomAlbert(albert_base_configuration)
|
| 21 |
+
|
| 22 |
+
files = os.listdir(log_dir)
|
| 23 |
+
ckpts = []
|
| 24 |
+
for f in os.listdir(log_dir):
|
| 25 |
+
if f.startswith("step_"): ckpts.append(f)
|
| 26 |
+
|
| 27 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
| 28 |
+
iters = sorted(iters)[-1]
|
| 29 |
+
|
| 30 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
|
| 31 |
+
state_dict = checkpoint['net']
|
| 32 |
+
from collections import OrderedDict
|
| 33 |
+
new_state_dict = OrderedDict()
|
| 34 |
+
for k, v in state_dict.items():
|
| 35 |
+
name = k[7:] # remove `module.`
|
| 36 |
+
if name.startswith('encoder.'):
|
| 37 |
+
name = name[8:] # remove `encoder.`
|
| 38 |
+
new_state_dict[name] = v
|
| 39 |
+
del new_state_dict["embeddings.position_ids"]
|
| 40 |
+
bert.load_state_dict(new_state_dict, strict=False)
|
| 41 |
+
|
| 42 |
+
return bert
|
Utils/Utils2/config.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
|
| 2 |
+
PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
|
| 3 |
+
min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
|
| 4 |
+
device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
|
| 5 |
+
load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
|
| 6 |
+
TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
|
| 7 |
+
lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
|
| 8 |
+
lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
|
| 9 |
+
model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
|
| 10 |
+
5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
|
| 11 |
+
upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
|
| 12 |
+
dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
|
| 13 |
+
std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
|
| 14 |
+
num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
|
| 15 |
+
max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
|
| 16 |
+
slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
|
| 17 |
+
sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
|
| 18 |
+
lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
|
| 19 |
+
win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
|
| 20 |
+
save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
|
| 21 |
+
iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
|
Utils/Utils2/engineer_style_vectors_v2.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import shutil
|
| 4 |
+
import csv
|
| 5 |
+
import io
|
| 6 |
+
import os
|
| 7 |
+
import typing
|
| 8 |
+
import wave
|
| 9 |
+
import sys
|
| 10 |
+
from mimic3_tts.__main__ import (CommandLineInterfaceState,
|
| 11 |
+
get_args,
|
| 12 |
+
initialize_args,
|
| 13 |
+
initialize_tts,
|
| 14 |
+
# print_voices,
|
| 15 |
+
# process_lines,
|
| 16 |
+
shutdown_tts,
|
| 17 |
+
OutputNaming,
|
| 18 |
+
process_line)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process_lines(state: CommandLineInterfaceState, wav_path=None):
|
| 22 |
+
'''MIMIC3 INTERNAL CALL that yields the sigh sound'''
|
| 23 |
+
|
| 24 |
+
args = state.args
|
| 25 |
+
|
| 26 |
+
result_idx = 0
|
| 27 |
+
print(f'why waitings in the for loop LIN {state.texts=}\n')
|
| 28 |
+
for line in state.texts:
|
| 29 |
+
print(f'LIN {line=}\n') # prints \n so is empty not getting the predifne text of state.texts
|
| 30 |
+
line_voice: typing.Optional[str] = None
|
| 31 |
+
line_id = ""
|
| 32 |
+
line = line.strip()
|
| 33 |
+
# if not line:
|
| 34 |
+
# continue
|
| 35 |
+
|
| 36 |
+
if args.output_naming == OutputNaming.ID:
|
| 37 |
+
# Line has the format id|text instead of just text
|
| 38 |
+
with io.StringIO(line) as line_io:
|
| 39 |
+
reader = csv.reader(line_io, delimiter=args.csv_delimiter)
|
| 40 |
+
row = next(reader)
|
| 41 |
+
line_id, line = row[0], row[-1]
|
| 42 |
+
if args.csv_voice:
|
| 43 |
+
line_voice = row[1]
|
| 44 |
+
|
| 45 |
+
process_line(line, state, line_id=line_id, line_voice=line_voice)
|
| 46 |
+
result_idx += 1
|
| 47 |
+
|
| 48 |
+
print('\nARRive at All Audio writing\n\n\n\n')
|
| 49 |
+
# -------------------------------------------------------------------------
|
| 50 |
+
|
| 51 |
+
# Write combined audio to stdout
|
| 52 |
+
if state.all_audio:
|
| 53 |
+
# _LOGGER.debug("Writing WAV audio to stdout")
|
| 54 |
+
|
| 55 |
+
if sys.stdout.isatty() and (not state.args.stdout):
|
| 56 |
+
with io.BytesIO() as wav_io:
|
| 57 |
+
wav_file_play: wave.Wave_write = wave.open(wav_io, "wb")
|
| 58 |
+
with wav_file_play:
|
| 59 |
+
wav_file_play.setframerate(state.sample_rate_hz)
|
| 60 |
+
wav_file_play.setsampwidth(state.sample_width_bytes)
|
| 61 |
+
wav_file_play.setnchannels(state.num_channels)
|
| 62 |
+
wav_file_play.writeframes(state.all_audio)
|
| 63 |
+
|
| 64 |
+
# play_wav_bytes(state.args, wav_io.getvalue())
|
| 65 |
+
# wav_path = '_direct_call_2.wav'
|
| 66 |
+
with open(wav_path, 'wb') as wav_file:
|
| 67 |
+
wav_file.write(wav_io.getvalue())
|
| 68 |
+
wav_file.seek(0)
|
| 69 |
+
|
| 70 |
+
# -----------------------------------------------------------------------------
|
| 71 |
+
# cat _tmp_ssml.txt | mimic3 --cuda --ssml --noise-w 0.90001 --length-scale 0.91 --noise-scale 0.04 > noise_w=0.90_en_happy_2.wav
|
| 72 |
+
# ======================================================================
|
| 73 |
+
out_dir = 'assets/'
|
| 74 |
+
reference_wav_directory = 'assets/wavs/style_vector_v2/'
|
| 75 |
+
Path(reference_wav_directory).mkdir(parents=True, exist_ok=True)
|
| 76 |
+
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
| 77 |
+
|
| 78 |
+
wav_dir = 'assets/wavs/'
|
| 79 |
+
Path(wav_dir).mkdir(parents=True, exist_ok=True)
|
| 80 |
+
N_PIX = 11
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# =======================================================================
|
| 84 |
+
# S T A R T G E N E R A T E png/wav
|
| 85 |
+
# =======================================================================
|
| 86 |
+
|
| 87 |
+
NOISE_SCALE = .667
|
| 88 |
+
NOISE_W = .9001 #.8 #.90001 # default .8 in __main__.py @ L697 IGNORED DUE TO ARTEfACTS - FOR NOW USE default
|
| 89 |
+
|
| 90 |
+
a = [
|
| 91 |
+
'p239',
|
| 92 |
+
'p236',
|
| 93 |
+
'p264',
|
| 94 |
+
'p250',
|
| 95 |
+
'p259',
|
| 96 |
+
'p247',
|
| 97 |
+
'p261',
|
| 98 |
+
'p263',
|
| 99 |
+
'p283',
|
| 100 |
+
'p274',
|
| 101 |
+
'p286',
|
| 102 |
+
'p276',
|
| 103 |
+
'p270',
|
| 104 |
+
'p281',
|
| 105 |
+
'p277',
|
| 106 |
+
'p231',
|
| 107 |
+
'p238',
|
| 108 |
+
'p271',
|
| 109 |
+
'p257',
|
| 110 |
+
'p273',
|
| 111 |
+
'p284',
|
| 112 |
+
'p329',
|
| 113 |
+
'p361',
|
| 114 |
+
'p287',
|
| 115 |
+
'p360',
|
| 116 |
+
'p374',
|
| 117 |
+
'p376',
|
| 118 |
+
'p310',
|
| 119 |
+
'p304',
|
| 120 |
+
'p340',
|
| 121 |
+
'p347',
|
| 122 |
+
'p330',
|
| 123 |
+
'p308',
|
| 124 |
+
'p314',
|
| 125 |
+
'p317',
|
| 126 |
+
'p339',
|
| 127 |
+
'p311',
|
| 128 |
+
'p294',
|
| 129 |
+
'p305',
|
| 130 |
+
'p266',
|
| 131 |
+
'p335',
|
| 132 |
+
'p334',
|
| 133 |
+
'p318',
|
| 134 |
+
'p323',
|
| 135 |
+
'p351',
|
| 136 |
+
'p333',
|
| 137 |
+
'p313',
|
| 138 |
+
'p316',
|
| 139 |
+
'p244',
|
| 140 |
+
'p307',
|
| 141 |
+
'p363',
|
| 142 |
+
'p336',
|
| 143 |
+
'p312',
|
| 144 |
+
'p267',
|
| 145 |
+
'p297',
|
| 146 |
+
'p275',
|
| 147 |
+
'p295',
|
| 148 |
+
'p288',
|
| 149 |
+
'p258',
|
| 150 |
+
'p301',
|
| 151 |
+
'p232',
|
| 152 |
+
'p292',
|
| 153 |
+
'p272',
|
| 154 |
+
'p278',
|
| 155 |
+
'p280',
|
| 156 |
+
'p341',
|
| 157 |
+
'p268',
|
| 158 |
+
'p298',
|
| 159 |
+
'p299',
|
| 160 |
+
'p279',
|
| 161 |
+
'p285',
|
| 162 |
+
'p326',
|
| 163 |
+
'p300',
|
| 164 |
+
's5',
|
| 165 |
+
'p230',
|
| 166 |
+
'p254',
|
| 167 |
+
'p269',
|
| 168 |
+
'p293',
|
| 169 |
+
'p252',
|
| 170 |
+
'p345',
|
| 171 |
+
'p262',
|
| 172 |
+
'p243',
|
| 173 |
+
'p227',
|
| 174 |
+
'p343',
|
| 175 |
+
'p255',
|
| 176 |
+
'p229',
|
| 177 |
+
'p240',
|
| 178 |
+
'p248',
|
| 179 |
+
'p253',
|
| 180 |
+
'p233',
|
| 181 |
+
'p228',
|
| 182 |
+
'p251',
|
| 183 |
+
'p282',
|
| 184 |
+
'p246',
|
| 185 |
+
'p234',
|
| 186 |
+
'p226',
|
| 187 |
+
'p260',
|
| 188 |
+
'p245',
|
| 189 |
+
'p241',
|
| 190 |
+
'p303',
|
| 191 |
+
'p265',
|
| 192 |
+
'p306',
|
| 193 |
+
'p237',
|
| 194 |
+
'p249',
|
| 195 |
+
'p256',
|
| 196 |
+
'p302',
|
| 197 |
+
'p364',
|
| 198 |
+
'p225',
|
| 199 |
+
'p362']
|
| 200 |
+
|
| 201 |
+
print(len(a))
|
| 202 |
+
|
| 203 |
+
b = []
|
| 204 |
+
|
| 205 |
+
for row in a:
|
| 206 |
+
b.append(f'en_US/vctk_low#{row}')
|
| 207 |
+
|
| 208 |
+
# print(b)
|
| 209 |
+
|
| 210 |
+
# 00000000 arctic
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
a = [
|
| 214 |
+
'awb' # comma
|
| 215 |
+
'rms',
|
| 216 |
+
'slt',
|
| 217 |
+
'ksp',
|
| 218 |
+
'clb',
|
| 219 |
+
'aew',
|
| 220 |
+
'bdl',
|
| 221 |
+
'lnh',
|
| 222 |
+
'jmk',
|
| 223 |
+
'rxr',
|
| 224 |
+
'fem',
|
| 225 |
+
'ljm',
|
| 226 |
+
'slp',
|
| 227 |
+
'ahw',
|
| 228 |
+
'axb',
|
| 229 |
+
'aup',
|
| 230 |
+
'eey',
|
| 231 |
+
'gka',
|
| 232 |
+
]
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
for row in a:
|
| 236 |
+
b.append(f'en_US/cmu-arctic_low#{row}')
|
| 237 |
+
|
| 238 |
+
# HIFItts
|
| 239 |
+
|
| 240 |
+
a = ['9017',
|
| 241 |
+
'6097',
|
| 242 |
+
'92']
|
| 243 |
+
|
| 244 |
+
for row in a:
|
| 245 |
+
b.append(f'en_US/hifi-tts_low#{row}')
|
| 246 |
+
|
| 247 |
+
a = [
|
| 248 |
+
'elliot_miller',
|
| 249 |
+
'judy_bieber',
|
| 250 |
+
'mary_ann']
|
| 251 |
+
|
| 252 |
+
for row in a:
|
| 253 |
+
b.append(f'en_US/m-ailabs_low#{row}')
|
| 254 |
+
|
| 255 |
+
# LJspeech - single speaker
|
| 256 |
+
|
| 257 |
+
b.append(f'en_US/ljspeech_low')
|
| 258 |
+
|
| 259 |
+
# en_UK apope - only speaker
|
| 260 |
+
|
| 261 |
+
b.append(f'en_UK/apope_low')
|
| 262 |
+
|
| 263 |
+
all_names = b
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
VOICES = {}
|
| 267 |
+
for _id, _voice in enumerate(all_names):
|
| 268 |
+
|
| 269 |
+
# If GitHub Quota exceded copy mimic-voices from local copies
|
| 270 |
+
#
|
| 271 |
+
# https://github.com/MycroftAI/mimic3-voices
|
| 272 |
+
#
|
| 273 |
+
home_voice_dir = f'/home/audeering.local/dkounadis/.local/share/mycroft/mimic3/voices/{_voice.split("#")[0]}/'
|
| 274 |
+
Path(home_voice_dir).mkdir(parents=True, exist_ok=True)
|
| 275 |
+
speaker_free_voice_name = _voice.split("#")[0] if '#' in _voice else _voice
|
| 276 |
+
if not os.path.isfile(home_voice_dir + 'generator.onnx'):
|
| 277 |
+
shutil.copyfile(
|
| 278 |
+
f'/data/dkounadis/cache/mimic3-voices/voices/{speaker_free_voice_name}/generator.onnx',
|
| 279 |
+
home_voice_dir + 'generator.onnx') # 'en_US incl. voice
|
| 280 |
+
|
| 281 |
+
prepare_file = _voice.replace('/', '_').replace('#', '_').replace('_low', '')
|
| 282 |
+
if 'cmu-arctic' in prepare_file:
|
| 283 |
+
prepare_file = prepare_file.replace('cmu-arctic', 'cmu_arctic') + '.wav'
|
| 284 |
+
else:
|
| 285 |
+
prepare_file = prepare_file + '.wav' # [...cmu-arctic...](....cmu_arctic....wav)
|
| 286 |
+
|
| 287 |
+
file_true = prepare_file.split('.wav')[0] + '_true_.wav'
|
| 288 |
+
file_false = prepare_file.split('.wav')[0] + '_false_.wav'
|
| 289 |
+
print(prepare_file, file_false, file_true)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
reference_wav = reference_wav_directory + prepare_file
|
| 293 |
+
rate = 4 # high speed sounds nice if used as speaker-reference audio for StyleTTS2
|
| 294 |
+
_ssml = (
|
| 295 |
+
'<speak>'
|
| 296 |
+
'<prosody volume=\'64\'>'
|
| 297 |
+
f'<prosody rate=\'{rate}\'>'
|
| 298 |
+
f'<voice name=\'{_voice}\'>'
|
| 299 |
+
'<s>'
|
| 300 |
+
'Sweet dreams are made of this, .. !!! # I travel the world and the seven seas.'
|
| 301 |
+
'</s>'
|
| 302 |
+
'</voice>'
|
| 303 |
+
'</prosody>'
|
| 304 |
+
'</prosody>'
|
| 305 |
+
'</speak>'
|
| 306 |
+
)
|
| 307 |
+
with open('_tmp_ssml.txt', 'w') as f:
|
| 308 |
+
f.write(_ssml)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > {reference_wav}', shell=True)
|
| 312 |
+
# ps.wait() # using ps to call mimic3 because samples dont have time to be written in stdout buffer
|
| 313 |
+
args = get_args()
|
| 314 |
+
args.ssml = True
|
| 315 |
+
args.text = [_ssml] #['aa', 'bb'] #txt
|
| 316 |
+
args.interactive = False
|
| 317 |
+
# args.output_naming = OutputNaming.TIME
|
| 318 |
+
|
| 319 |
+
state = CommandLineInterfaceState(args=args)
|
| 320 |
+
initialize_args(state)
|
| 321 |
+
initialize_tts(state)
|
| 322 |
+
# args.texts = [txt] #['aa', 'bb'] #txt
|
| 323 |
+
# state.stdout = '.' #None #'makeme.wav'
|
| 324 |
+
# state.output_dir = '.noopy'
|
| 325 |
+
# state.interactive = False
|
| 326 |
+
# state.output_naming = OutputNaming.TIME
|
| 327 |
+
# # state.ssml = 1234546575
|
| 328 |
+
# state.stdout = True
|
| 329 |
+
# state.tts = True
|
| 330 |
+
process_lines(state, wav_path=reference_wav)
|
| 331 |
+
shutdown_tts(state)
|
Utils/config.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
|
| 2 |
+
PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
|
| 3 |
+
min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
|
| 4 |
+
device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
|
| 5 |
+
load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
|
| 6 |
+
TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
|
| 7 |
+
lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
|
| 8 |
+
lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
|
| 9 |
+
model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
|
| 10 |
+
5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
|
| 11 |
+
upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
|
| 12 |
+
dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
|
| 13 |
+
std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
|
| 14 |
+
num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
|
| 15 |
+
max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
|
| 16 |
+
slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
|
| 17 |
+
sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
|
| 18 |
+
lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
|
| 19 |
+
win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
|
| 20 |
+
save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
|
| 21 |
+
iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
|
Utils/engineer_style_vectors_v2.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import shutil
|
| 4 |
+
import csv
|
| 5 |
+
import io
|
| 6 |
+
import os
|
| 7 |
+
import typing
|
| 8 |
+
import wave
|
| 9 |
+
import sys
|
| 10 |
+
from mimic3_tts.__main__ import (CommandLineInterfaceState,
|
| 11 |
+
get_args,
|
| 12 |
+
initialize_args,
|
| 13 |
+
initialize_tts,
|
| 14 |
+
# print_voices,
|
| 15 |
+
# process_lines,
|
| 16 |
+
shutdown_tts,
|
| 17 |
+
OutputNaming,
|
| 18 |
+
process_line)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process_lines(state: CommandLineInterfaceState, wav_path=None):
|
| 22 |
+
'''MIMIC3 INTERNAL CALL that yields the sigh sound'''
|
| 23 |
+
|
| 24 |
+
args = state.args
|
| 25 |
+
|
| 26 |
+
result_idx = 0
|
| 27 |
+
print(f'why waitings in the for loop LIN {state.texts=}\n')
|
| 28 |
+
for line in state.texts:
|
| 29 |
+
print(f'LIN {line=}\n') # prints \n so is empty not getting the predifne text of state.texts
|
| 30 |
+
line_voice: typing.Optional[str] = None
|
| 31 |
+
line_id = ""
|
| 32 |
+
line = line.strip()
|
| 33 |
+
# if not line:
|
| 34 |
+
# continue
|
| 35 |
+
|
| 36 |
+
if args.output_naming == OutputNaming.ID:
|
| 37 |
+
# Line has the format id|text instead of just text
|
| 38 |
+
with io.StringIO(line) as line_io:
|
| 39 |
+
reader = csv.reader(line_io, delimiter=args.csv_delimiter)
|
| 40 |
+
row = next(reader)
|
| 41 |
+
line_id, line = row[0], row[-1]
|
| 42 |
+
if args.csv_voice:
|
| 43 |
+
line_voice = row[1]
|
| 44 |
+
|
| 45 |
+
process_line(line, state, line_id=line_id, line_voice=line_voice)
|
| 46 |
+
result_idx += 1
|
| 47 |
+
|
| 48 |
+
print('\nARRive at All Audio writing\n\n\n\n')
|
| 49 |
+
# -------------------------------------------------------------------------
|
| 50 |
+
|
| 51 |
+
# Write combined audio to stdout
|
| 52 |
+
if state.all_audio:
|
| 53 |
+
# _LOGGER.debug("Writing WAV audio to stdout")
|
| 54 |
+
|
| 55 |
+
if sys.stdout.isatty() and (not state.args.stdout):
|
| 56 |
+
with io.BytesIO() as wav_io:
|
| 57 |
+
wav_file_play: wave.Wave_write = wave.open(wav_io, "wb")
|
| 58 |
+
with wav_file_play:
|
| 59 |
+
wav_file_play.setframerate(state.sample_rate_hz)
|
| 60 |
+
wav_file_play.setsampwidth(state.sample_width_bytes)
|
| 61 |
+
wav_file_play.setnchannels(state.num_channels)
|
| 62 |
+
wav_file_play.writeframes(state.all_audio)
|
| 63 |
+
|
| 64 |
+
# play_wav_bytes(state.args, wav_io.getvalue())
|
| 65 |
+
# wav_path = '_direct_call_2.wav'
|
| 66 |
+
with open(wav_path, 'wb') as wav_file:
|
| 67 |
+
wav_file.write(wav_io.getvalue())
|
| 68 |
+
wav_file.seek(0)
|
| 69 |
+
|
| 70 |
+
# -----------------------------------------------------------------------------
|
| 71 |
+
# cat _tmp_ssml.txt | mimic3 --cuda --ssml --noise-w 0.90001 --length-scale 0.91 --noise-scale 0.04 > noise_w=0.90_en_happy_2.wav
|
| 72 |
+
# ======================================================================
|
| 73 |
+
out_dir = 'assets/'
|
| 74 |
+
reference_wav_directory = 'assets/wavs/style_vector_v2/'
|
| 75 |
+
Path(reference_wav_directory).mkdir(parents=True, exist_ok=True)
|
| 76 |
+
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
| 77 |
+
|
| 78 |
+
wav_dir = 'assets/wavs/'
|
| 79 |
+
Path(wav_dir).mkdir(parents=True, exist_ok=True)
|
| 80 |
+
N_PIX = 11
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# =======================================================================
|
| 84 |
+
# S T A R T G E N E R A T E png/wav
|
| 85 |
+
# =======================================================================
|
| 86 |
+
|
| 87 |
+
NOISE_SCALE = .667
|
| 88 |
+
NOISE_W = .9001 #.8 #.90001 # default .8 in __main__.py @ L697 IGNORED DUE TO ARTEfACTS - FOR NOW USE default
|
| 89 |
+
|
| 90 |
+
a = [
|
| 91 |
+
'p239',
|
| 92 |
+
'p236',
|
| 93 |
+
'p264',
|
| 94 |
+
'p250',
|
| 95 |
+
'p259',
|
| 96 |
+
'p247',
|
| 97 |
+
'p261',
|
| 98 |
+
'p263',
|
| 99 |
+
'p283',
|
| 100 |
+
'p274',
|
| 101 |
+
'p286',
|
| 102 |
+
'p276',
|
| 103 |
+
'p270',
|
| 104 |
+
'p281',
|
| 105 |
+
'p277',
|
| 106 |
+
'p231',
|
| 107 |
+
'p238',
|
| 108 |
+
'p271',
|
| 109 |
+
'p257',
|
| 110 |
+
'p273',
|
| 111 |
+
'p284',
|
| 112 |
+
'p329',
|
| 113 |
+
'p361',
|
| 114 |
+
'p287',
|
| 115 |
+
'p360',
|
| 116 |
+
'p374',
|
| 117 |
+
'p376',
|
| 118 |
+
'p310',
|
| 119 |
+
'p304',
|
| 120 |
+
'p340',
|
| 121 |
+
'p347',
|
| 122 |
+
'p330',
|
| 123 |
+
'p308',
|
| 124 |
+
'p314',
|
| 125 |
+
'p317',
|
| 126 |
+
'p339',
|
| 127 |
+
'p311',
|
| 128 |
+
'p294',
|
| 129 |
+
'p305',
|
| 130 |
+
'p266',
|
| 131 |
+
'p335',
|
| 132 |
+
'p334',
|
| 133 |
+
'p318',
|
| 134 |
+
'p323',
|
| 135 |
+
'p351',
|
| 136 |
+
'p333',
|
| 137 |
+
'p313',
|
| 138 |
+
'p316',
|
| 139 |
+
'p244',
|
| 140 |
+
'p307',
|
| 141 |
+
'p363',
|
| 142 |
+
'p336',
|
| 143 |
+
'p312',
|
| 144 |
+
'p267',
|
| 145 |
+
'p297',
|
| 146 |
+
'p275',
|
| 147 |
+
'p295',
|
| 148 |
+
'p288',
|
| 149 |
+
'p258',
|
| 150 |
+
'p301',
|
| 151 |
+
'p232',
|
| 152 |
+
'p292',
|
| 153 |
+
'p272',
|
| 154 |
+
'p278',
|
| 155 |
+
'p280',
|
| 156 |
+
'p341',
|
| 157 |
+
'p268',
|
| 158 |
+
'p298',
|
| 159 |
+
'p299',
|
| 160 |
+
'p279',
|
| 161 |
+
'p285',
|
| 162 |
+
'p326',
|
| 163 |
+
'p300',
|
| 164 |
+
's5',
|
| 165 |
+
'p230',
|
| 166 |
+
'p254',
|
| 167 |
+
'p269',
|
| 168 |
+
'p293',
|
| 169 |
+
'p252',
|
| 170 |
+
'p345',
|
| 171 |
+
'p262',
|
| 172 |
+
'p243',
|
| 173 |
+
'p227',
|
| 174 |
+
'p343',
|
| 175 |
+
'p255',
|
| 176 |
+
'p229',
|
| 177 |
+
'p240',
|
| 178 |
+
'p248',
|
| 179 |
+
'p253',
|
| 180 |
+
'p233',
|
| 181 |
+
'p228',
|
| 182 |
+
'p251',
|
| 183 |
+
'p282',
|
| 184 |
+
'p246',
|
| 185 |
+
'p234',
|
| 186 |
+
'p226',
|
| 187 |
+
'p260',
|
| 188 |
+
'p245',
|
| 189 |
+
'p241',
|
| 190 |
+
'p303',
|
| 191 |
+
'p265',
|
| 192 |
+
'p306',
|
| 193 |
+
'p237',
|
| 194 |
+
'p249',
|
| 195 |
+
'p256',
|
| 196 |
+
'p302',
|
| 197 |
+
'p364',
|
| 198 |
+
'p225',
|
| 199 |
+
'p362']
|
| 200 |
+
|
| 201 |
+
print(len(a))
|
| 202 |
+
|
| 203 |
+
b = []
|
| 204 |
+
|
| 205 |
+
for row in a:
|
| 206 |
+
b.append(f'en_US/vctk_low#{row}')
|
| 207 |
+
|
| 208 |
+
# print(b)
|
| 209 |
+
|
| 210 |
+
# 00000000 arctic
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
a = [
|
| 214 |
+
'awb' # comma
|
| 215 |
+
'rms',
|
| 216 |
+
'slt',
|
| 217 |
+
'ksp',
|
| 218 |
+
'clb',
|
| 219 |
+
'aew',
|
| 220 |
+
'bdl',
|
| 221 |
+
'lnh',
|
| 222 |
+
'jmk',
|
| 223 |
+
'rxr',
|
| 224 |
+
'fem',
|
| 225 |
+
'ljm',
|
| 226 |
+
'slp',
|
| 227 |
+
'ahw',
|
| 228 |
+
'axb',
|
| 229 |
+
'aup',
|
| 230 |
+
'eey',
|
| 231 |
+
'gka',
|
| 232 |
+
]
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
for row in a:
|
| 236 |
+
b.append(f'en_US/cmu-arctic_low#{row}')
|
| 237 |
+
|
| 238 |
+
# HIFItts
|
| 239 |
+
|
| 240 |
+
a = ['9017',
|
| 241 |
+
'6097',
|
| 242 |
+
'92']
|
| 243 |
+
|
| 244 |
+
for row in a:
|
| 245 |
+
b.append(f'en_US/hifi-tts_low#{row}')
|
| 246 |
+
|
| 247 |
+
a = [
|
| 248 |
+
'elliot_miller',
|
| 249 |
+
'judy_bieber',
|
| 250 |
+
'mary_ann']
|
| 251 |
+
|
| 252 |
+
for row in a:
|
| 253 |
+
b.append(f'en_US/m-ailabs_low#{row}')
|
| 254 |
+
|
| 255 |
+
# LJspeech - single speaker
|
| 256 |
+
|
| 257 |
+
b.append(f'en_US/ljspeech_low')
|
| 258 |
+
|
| 259 |
+
# en_UK apope - only speaker
|
| 260 |
+
|
| 261 |
+
b.append(f'en_UK/apope_low')
|
| 262 |
+
|
| 263 |
+
all_names = b
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
VOICES = {}
|
| 267 |
+
for _id, _voice in enumerate(all_names):
|
| 268 |
+
|
| 269 |
+
# If GitHub Quota exceded copy mimic-voices from local copies
|
| 270 |
+
#
|
| 271 |
+
# https://github.com/MycroftAI/mimic3-voices
|
| 272 |
+
#
|
| 273 |
+
home_voice_dir = f'/home/audeering.local/dkounadis/.local/share/mycroft/mimic3/voices/{_voice.split("#")[0]}/'
|
| 274 |
+
Path(home_voice_dir).mkdir(parents=True, exist_ok=True)
|
| 275 |
+
speaker_free_voice_name = _voice.split("#")[0] if '#' in _voice else _voice
|
| 276 |
+
if not os.path.isfile(home_voice_dir + 'generator.onnx'):
|
| 277 |
+
shutil.copyfile(
|
| 278 |
+
f'/data/dkounadis/cache/mimic3-voices/voices/{speaker_free_voice_name}/generator.onnx',
|
| 279 |
+
home_voice_dir + 'generator.onnx') # 'en_US incl. voice
|
| 280 |
+
|
| 281 |
+
prepare_file = _voice.replace('/', '_').replace('#', '_').replace('_low', '')
|
| 282 |
+
if 'cmu-arctic' in prepare_file:
|
| 283 |
+
prepare_file = prepare_file.replace('cmu-arctic', 'cmu_arctic') + '.wav'
|
| 284 |
+
else:
|
| 285 |
+
prepare_file = prepare_file + '.wav' # [...cmu-arctic...](....cmu_arctic....wav)
|
| 286 |
+
|
| 287 |
+
file_true = prepare_file.split('.wav')[0] + '_true_.wav'
|
| 288 |
+
file_false = prepare_file.split('.wav')[0] + '_false_.wav'
|
| 289 |
+
print(prepare_file, file_false, file_true)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
reference_wav = reference_wav_directory + prepare_file
|
| 293 |
+
rate = 4 # high speed sounds nice if used as speaker-reference audio for StyleTTS2
|
| 294 |
+
_ssml = (
|
| 295 |
+
'<speak>'
|
| 296 |
+
'<prosody volume=\'64\'>'
|
| 297 |
+
f'<prosody rate=\'{rate}\'>'
|
| 298 |
+
f'<voice name=\'{_voice}\'>'
|
| 299 |
+
'<s>'
|
| 300 |
+
'Sweet dreams are made of this, .. !!! # I travel the world and the seven seas.'
|
| 301 |
+
'</s>'
|
| 302 |
+
'</voice>'
|
| 303 |
+
'</prosody>'
|
| 304 |
+
'</prosody>'
|
| 305 |
+
'</speak>'
|
| 306 |
+
)
|
| 307 |
+
with open('_tmp_ssml.txt', 'w') as f:
|
| 308 |
+
f.write(_ssml)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > {reference_wav}', shell=True)
|
| 312 |
+
# ps.wait() # using ps to call mimic3 because samples dont have time to be written in stdout buffer
|
| 313 |
+
args = get_args()
|
| 314 |
+
args.ssml = True
|
| 315 |
+
args.text = [_ssml] #['aa', 'bb'] #txt
|
| 316 |
+
args.interactive = False
|
| 317 |
+
# args.output_naming = OutputNaming.TIME
|
| 318 |
+
|
| 319 |
+
state = CommandLineInterfaceState(args=args)
|
| 320 |
+
initialize_args(state)
|
| 321 |
+
initialize_tts(state)
|
| 322 |
+
# args.texts = [txt] #['aa', 'bb'] #txt
|
| 323 |
+
# state.stdout = '.' #None #'makeme.wav'
|
| 324 |
+
# state.output_dir = '.noopy'
|
| 325 |
+
# state.interactive = False
|
| 326 |
+
# state.output_naming = OutputNaming.TIME
|
| 327 |
+
# # state.ssml = 1234546575
|
| 328 |
+
# state.stdout = True
|
| 329 |
+
# state.tts = True
|
| 330 |
+
process_lines(state, wav_path=reference_wav)
|
| 331 |
+
shutdown_tts(state)
|
models.py
CHANGED
|
@@ -517,7 +517,7 @@ def load_F0_models(path):
|
|
| 517 |
|
| 518 |
F0_model = JDCNet(num_class=1, seq_len=192)
|
| 519 |
print(path, 'WHAT ARE YOU TRYING TO LOAD F0 L520')
|
| 520 |
-
path.replace('.t7', '.pth')
|
| 521 |
params = torch.load(path, map_location='cpu')['net']
|
| 522 |
F0_model.load_state_dict(params)
|
| 523 |
_ = F0_model.train()
|
|
|
|
| 517 |
|
| 518 |
F0_model = JDCNet(num_class=1, seq_len=192)
|
| 519 |
print(path, 'WHAT ARE YOU TRYING TO LOAD F0 L520')
|
| 520 |
+
path = path.replace('.t7', '.pth')
|
| 521 |
params = torch.load(path, map_location='cpu')['net']
|
| 522 |
F0_model.load_state_dict(params)
|
| 523 |
_ = F0_model.train()
|