drbh
commited on
Commit
·
a9b8fe6
1
Parent(s):
b992f14
feat: update readme and add benching scripts
Browse files- README.md +21 -18
- compare_example.py +211 -0
- perf_plot.py +536 -0
- readme_example.py +88 -0
README.md
CHANGED
|
@@ -38,16 +38,23 @@ oooo ooo .oooo. ooo. .oo. .oo. .ooooo. .ooooo.
|
|
| 38 |
|
| 39 |
import time
|
| 40 |
import torch
|
|
|
|
| 41 |
from kernels import get_kernel
|
| 42 |
from pathlib import Path
|
| 43 |
from torch.nn import functional as F
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Configuration
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
num_experts, top_k = 32, 4
|
| 51 |
|
| 52 |
# Create routing weights
|
| 53 |
logits = torch.randn(batch_size, seq_len, num_experts)
|
|
@@ -60,13 +67,13 @@ flat_indices, flat_weights = indices.reshape(-1, top_k), weights.reshape(-1, top
|
|
| 60 |
batch_indices = torch.arange(batch_seq).unsqueeze(1).expand(-1, top_k)
|
| 61 |
routing_weights[batch_indices, flat_indices] = flat_weights
|
| 62 |
|
| 63 |
-
# Create model tensors
|
| 64 |
-
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda()
|
| 65 |
-
gate_up_proj = torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda()
|
| 66 |
-
gate_up_proj_bias = torch.zeros(num_experts, 2 * hidden_dim).cuda()
|
| 67 |
-
down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda()
|
| 68 |
-
down_proj_bias = torch.zeros(num_experts, hidden_dim).cuda()
|
| 69 |
-
routing_weights = routing_weights.cuda()
|
| 70 |
router_indices = flat_indices.cuda()
|
| 71 |
|
| 72 |
# Warmup
|
|
@@ -107,11 +114,7 @@ torch.cuda.synchronize()
|
|
| 107 |
elapsed_ms = (time.perf_counter() - start) * 1e3
|
| 108 |
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 109 |
|
| 110 |
-
print(f"Output sum
|
| 111 |
-
print(f"
|
| 112 |
-
print(f"
|
| 113 |
-
# Output sum: 124.2500
|
| 114 |
-
# Kernel time: 85.722 ms
|
| 115 |
-
# Peak GPU memory: 8403.40 MB
|
| 116 |
-
|
| 117 |
```
|
|
|
|
| 38 |
|
| 39 |
import time
|
| 40 |
import torch
|
| 41 |
+
from kernels import get_local_kernel
|
| 42 |
from kernels import get_kernel
|
| 43 |
from pathlib import Path
|
| 44 |
from torch.nn import functional as F
|
| 45 |
|
| 46 |
+
# Set seeds and deterministic flags for reproducibility
|
| 47 |
+
torch.manual_seed(42)
|
| 48 |
+
torch.cuda.manual_seed(42)
|
| 49 |
+
torch.cuda.manual_seed_all(42)
|
| 50 |
+
torch.backends.cudnn.deterministic = True
|
| 51 |
+
torch.backends.cudnn.benchmark = False
|
| 52 |
+
|
| 53 |
+
yamoe = get_kernel("drbh/yamoe", revision="v0.1.0")
|
| 54 |
|
| 55 |
# Configuration
|
| 56 |
+
batch_size, seq_len, hidden_dim = 16, 256, 2880
|
| 57 |
+
num_experts, top_k = 8, 2
|
|
|
|
| 58 |
|
| 59 |
# Create routing weights
|
| 60 |
logits = torch.randn(batch_size, seq_len, num_experts)
|
|
|
|
| 67 |
batch_indices = torch.arange(batch_seq).unsqueeze(1).expand(-1, top_k)
|
| 68 |
routing_weights[batch_indices, flat_indices] = flat_weights
|
| 69 |
|
| 70 |
+
# Create model tensors
|
| 71 |
+
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda()
|
| 72 |
+
gate_up_proj = torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda()
|
| 73 |
+
gate_up_proj_bias = torch.zeros(num_experts, 2 * hidden_dim).cuda()
|
| 74 |
+
down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda()
|
| 75 |
+
down_proj_bias = torch.zeros(num_experts, hidden_dim).cuda()
|
| 76 |
+
routing_weights = routing_weights.cuda()
|
| 77 |
router_indices = flat_indices.cuda()
|
| 78 |
|
| 79 |
# Warmup
|
|
|
|
| 114 |
elapsed_ms = (time.perf_counter() - start) * 1e3
|
| 115 |
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 116 |
|
| 117 |
+
print(f"Output: sum={output.sum().item():.1f}, min={output.min().item():.1f}, max={output.max().item():.1f}")
|
| 118 |
+
print(f"First 3: {output.view(-1)[:3].tolist()}")
|
| 119 |
+
print(f"Time: {elapsed_ms:.1f}ms, Memory: {peak_mem_mb:.0f}MB")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
```
|
compare_example.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = "==3.10"
|
| 3 |
+
# dependencies = ["torch==2.7.0", "triton", "numpy", "kernels"]
|
| 4 |
+
# [tool.uv.sources]
|
| 5 |
+
# kernels = { git = "https://github.com/huggingface/kernels.git" }
|
| 6 |
+
# ///
|
| 7 |
+
|
| 8 |
+
import time
|
| 9 |
+
import torch
|
| 10 |
+
from kernels import get_local_kernel
|
| 11 |
+
from kernels import get_kernel
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from torch.nn import functional as F
|
| 14 |
+
|
| 15 |
+
# Set seeds and deterministic flags for reproducibility
|
| 16 |
+
torch.manual_seed(42)
|
| 17 |
+
torch.cuda.manual_seed(42)
|
| 18 |
+
torch.cuda.manual_seed_all(42)
|
| 19 |
+
torch.backends.cudnn.deterministic = True
|
| 20 |
+
torch.backends.cudnn.benchmark = False
|
| 21 |
+
|
| 22 |
+
yamoe = get_kernel("drbh/yamoe", revision="v0.1.0")
|
| 23 |
+
|
| 24 |
+
# Configuration
|
| 25 |
+
batch_size, seq_len, hidden_dim = 4, 1024, 2880
|
| 26 |
+
# batch_size, seq_len, hidden_dim = 4, 32, 1024
|
| 27 |
+
num_experts, top_k = 8, 2
|
| 28 |
+
|
| 29 |
+
# Create routing weights
|
| 30 |
+
logits = torch.randn(batch_size, seq_len, num_experts)
|
| 31 |
+
probs = F.softmax(logits, dim=-1)
|
| 32 |
+
weights, indices = torch.topk(probs, top_k, dim=-1)
|
| 33 |
+
|
| 34 |
+
batch_seq = batch_size * seq_len
|
| 35 |
+
routing_weights = torch.zeros(batch_seq, num_experts, dtype=weights.dtype)
|
| 36 |
+
flat_indices, flat_weights = indices.reshape(-1, top_k), weights.reshape(-1, top_k)
|
| 37 |
+
batch_indices = torch.arange(batch_seq).unsqueeze(1).expand(-1, top_k)
|
| 38 |
+
routing_weights[batch_indices, flat_indices] = flat_weights
|
| 39 |
+
|
| 40 |
+
# Create model tensors
|
| 41 |
+
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda()
|
| 42 |
+
# gate_up_proj = torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda()
|
| 43 |
+
gate_up_proj_bias = torch.zeros(num_experts, 2 * hidden_dim).cuda()
|
| 44 |
+
# down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda()
|
| 45 |
+
down_proj_bias = torch.zeros(num_experts, hidden_dim).cuda()
|
| 46 |
+
# routing_weights = routing_weights.cuda()
|
| 47 |
+
router_indices = flat_indices.cuda()
|
| 48 |
+
|
| 49 |
+
gate_up_proj = torch.empty(num_experts, hidden_dim, 2 * hidden_dim, device="cuda")
|
| 50 |
+
down_proj = torch.empty(num_experts, hidden_dim, hidden_dim, device="cuda")
|
| 51 |
+
torch.nn.init.trunc_normal_(gate_up_proj, std=0.02)
|
| 52 |
+
torch.nn.init.trunc_normal_(down_proj, std=0.02)
|
| 53 |
+
|
| 54 |
+
routing_weights = routing_weights.to(dtype=torch.float32, device="cuda")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Warmup
|
| 58 |
+
for _ in range(5):
|
| 59 |
+
_ = yamoe.experts(
|
| 60 |
+
hidden_states.view(-1, hidden_dim),
|
| 61 |
+
router_indices,
|
| 62 |
+
routing_weights.view(-1, num_experts),
|
| 63 |
+
gate_up_proj,
|
| 64 |
+
gate_up_proj_bias,
|
| 65 |
+
down_proj,
|
| 66 |
+
down_proj_bias,
|
| 67 |
+
seq_len,
|
| 68 |
+
num_experts,
|
| 69 |
+
top_k,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Benchmark
|
| 73 |
+
torch.cuda.synchronize()
|
| 74 |
+
torch.cuda.reset_peak_memory_stats()
|
| 75 |
+
start = time.perf_counter()
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
output = yamoe.experts(
|
| 79 |
+
hidden_states.view(-1, hidden_dim),
|
| 80 |
+
router_indices,
|
| 81 |
+
routing_weights.view(-1, num_experts),
|
| 82 |
+
gate_up_proj,
|
| 83 |
+
gate_up_proj_bias,
|
| 84 |
+
down_proj,
|
| 85 |
+
down_proj_bias,
|
| 86 |
+
seq_len,
|
| 87 |
+
num_experts,
|
| 88 |
+
top_k,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
torch.cuda.synchronize()
|
| 92 |
+
elapsed_ms = (time.perf_counter() - start) * 1e3
|
| 93 |
+
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 94 |
+
|
| 95 |
+
# Store kernel results
|
| 96 |
+
kernel_output = output.clone()
|
| 97 |
+
kernel_time = elapsed_ms
|
| 98 |
+
kernel_memory = peak_mem_mb
|
| 99 |
+
|
| 100 |
+
## OPTIONAL
|
| 101 |
+
# Compare to reference implementation
|
| 102 |
+
config = type("Config", (), {})()
|
| 103 |
+
config.hidden_size = hidden_dim
|
| 104 |
+
config.intermediate_size = 4 * hidden_dim
|
| 105 |
+
config.num_local_experts = num_experts
|
| 106 |
+
|
| 107 |
+
model = yamoe.reference.GptOssExperts(config)
|
| 108 |
+
|
| 109 |
+
# set the weights and biases from above to the reference model
|
| 110 |
+
model.gate_up_proj.data = gate_up_proj
|
| 111 |
+
model.gate_up_proj_bias.data = gate_up_proj_bias
|
| 112 |
+
model.down_proj.data = down_proj
|
| 113 |
+
model.down_proj_bias.data = down_proj_bias
|
| 114 |
+
|
| 115 |
+
model = model.cuda()
|
| 116 |
+
model.eval()
|
| 117 |
+
|
| 118 |
+
torch.cuda.synchronize()
|
| 119 |
+
torch.cuda.reset_peak_memory_stats()
|
| 120 |
+
start = time.perf_counter()
|
| 121 |
+
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
ref_output = model(hidden_states, router_indices, routing_weights)
|
| 124 |
+
|
| 125 |
+
torch.cuda.synchronize()
|
| 126 |
+
elapsed_ms = (time.perf_counter() - start) * 1e3
|
| 127 |
+
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 128 |
+
|
| 129 |
+
# Store reference results
|
| 130 |
+
ref_time = elapsed_ms
|
| 131 |
+
ref_memory = peak_mem_mb
|
| 132 |
+
|
| 133 |
+
# Reshape reference output to match kernel output
|
| 134 |
+
ref_output_reshaped = ref_output.view(kernel_output.shape)
|
| 135 |
+
|
| 136 |
+
# Calculate similarity metrics
|
| 137 |
+
mse = torch.nn.functional.mse_loss(kernel_output, ref_output_reshaped).item()
|
| 138 |
+
mae = torch.nn.functional.l1_loss(kernel_output, ref_output_reshaped).item()
|
| 139 |
+
|
| 140 |
+
# Cosine similarity
|
| 141 |
+
kernel_flat = kernel_output.view(-1)
|
| 142 |
+
ref_flat = ref_output_reshaped.view(-1)
|
| 143 |
+
cosine_sim = torch.nn.functional.cosine_similarity(
|
| 144 |
+
kernel_flat.unsqueeze(0), ref_flat.unsqueeze(0)
|
| 145 |
+
).item()
|
| 146 |
+
|
| 147 |
+
# Relative error (L2 norm of difference / L2 norm of reference)
|
| 148 |
+
diff_norm = torch.norm(kernel_output - ref_output_reshaped).item()
|
| 149 |
+
ref_norm = torch.norm(ref_output_reshaped).item()
|
| 150 |
+
rel_error = diff_norm / ref_norm if ref_norm > 0 else float("inf")
|
| 151 |
+
|
| 152 |
+
# Max absolute difference
|
| 153 |
+
max_abs_diff = torch.max(torch.abs(kernel_output - ref_output_reshaped)).item()
|
| 154 |
+
|
| 155 |
+
# Print comparison table
|
| 156 |
+
print("\n" + "=" * 80)
|
| 157 |
+
print(f"{'METRIC':<20} {'KERNEL':<15} {'REFERENCE':<15} {'SIMILARITY/SPEEDUP':<15}")
|
| 158 |
+
print("=" * 80)
|
| 159 |
+
|
| 160 |
+
print(
|
| 161 |
+
f"{'Sum':<20} {kernel_output.sum().item():<15.4f} {ref_output_reshaped.sum().item():<15.4f} {'N/A':<15}"
|
| 162 |
+
)
|
| 163 |
+
print(
|
| 164 |
+
f"{'Min':<20} {kernel_output.min().item():<15.4f} {ref_output_reshaped.min().item():<15.4f} {'N/A':<15}"
|
| 165 |
+
)
|
| 166 |
+
print(
|
| 167 |
+
f"{'Max':<20} {kernel_output.max().item():<15.4f} {ref_output_reshaped.max().item():<15.4f} {'N/A':<15}"
|
| 168 |
+
)
|
| 169 |
+
print(
|
| 170 |
+
f"{'Norm (L2)':<20} {kernel_output.norm().item():<15.4f} {ref_output_reshaped.norm().item():<15.4f} {'N/A':<15}"
|
| 171 |
+
)
|
| 172 |
+
print(
|
| 173 |
+
f"{'Std':<20} {kernel_output.std().item():<15.4f} {ref_output_reshaped.std().item():<15.4f} {'N/A':<15}"
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
print("-" * 80)
|
| 177 |
+
print(
|
| 178 |
+
f"{'Time (ms)':<20} {kernel_time:<15.3f} {ref_time:<15.3f} {ref_time / kernel_time:<15.2f}x"
|
| 179 |
+
)
|
| 180 |
+
print(
|
| 181 |
+
f"{'Memory (MB)':<20} {kernel_memory:<15.2f} {ref_memory:<15.2f} {ref_memory / kernel_memory:<15.2f}x"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
print("-" * 80)
|
| 185 |
+
print("SIMILARITY METRICS")
|
| 186 |
+
print("-" * 80)
|
| 187 |
+
print(f"{'METRIC':<20} {'VALUE':<15} {'DIFFERENCE':<15}")
|
| 188 |
+
print("-" * 80)
|
| 189 |
+
print(f"{'MSE':<20} {mse:<15.6e} {'N/A':<15}")
|
| 190 |
+
print(f"{'MAE':<20} {mae:<15.6e} {'N/A':<15}")
|
| 191 |
+
print(f"{'Cosine Similarity':<20} {cosine_sim:<15.6f} {abs(1.0 - cosine_sim):<15.6f}")
|
| 192 |
+
print(f"{'Relative Error':<20} {rel_error:<15.6e} {'N/A':<15}")
|
| 193 |
+
print(f"{'Max Abs Diff':<20} {max_abs_diff:<15.6e} {'N/A':<15}")
|
| 194 |
+
|
| 195 |
+
print("-" * 80)
|
| 196 |
+
print("FIRST 10 ELEMENTS COMPARISON")
|
| 197 |
+
print("-" * 80)
|
| 198 |
+
|
| 199 |
+
# Get first 10 elements as numpy arrays for nice display
|
| 200 |
+
kernel_first_10 = kernel_flat[:10].cpu().numpy()
|
| 201 |
+
ref_first_10 = ref_flat[:10].cpu().numpy()
|
| 202 |
+
diff_first_10 = kernel_first_10 - ref_first_10
|
| 203 |
+
|
| 204 |
+
print(f"{'INDEX':<5} {'KERNEL':<12} {'REFERENCE':<12} {'DIFF':<12}")
|
| 205 |
+
print("-" * 45)
|
| 206 |
+
for i in range(10):
|
| 207 |
+
print(
|
| 208 |
+
f"{i:<5} {kernel_first_10[i]:<12.6f} {ref_first_10[i]:<12.6f} {diff_first_10[i]:<12.6f}"
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
print("=" * 80)
|
perf_plot.py
ADDED
|
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = "==3.10"
|
| 3 |
+
# dependencies = ["torch==2.7.0", "triton", "numpy", "kernels", "matplotlib"]
|
| 4 |
+
# [tool.uv.sources]
|
| 5 |
+
# kernels = { git = "https://github.com/huggingface/kernels.git" }
|
| 6 |
+
# ///
|
| 7 |
+
|
| 8 |
+
import time
|
| 9 |
+
import torch
|
| 10 |
+
from kernels import get_local_kernel, get_kernel
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
+
import sys
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import matplotlib.gridspec as gridspec
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
# sys.path.insert(0, "./torch-ext")
|
| 19 |
+
# import yamoe
|
| 20 |
+
# import yamoe.reference as reference
|
| 21 |
+
|
| 22 |
+
yamoe = get_kernel("drbh/yamoe", revision="v0.1.0")
|
| 23 |
+
reference = yamoe.reference
|
| 24 |
+
|
| 25 |
+
# Setup
|
| 26 |
+
torch.manual_seed(0)
|
| 27 |
+
|
| 28 |
+
# Parameter combinations to test
|
| 29 |
+
configs = [
|
| 30 |
+
{"seq_len": 512, "hidden_dim": 2880, "num_experts": 32, "top_k": 4},
|
| 31 |
+
{"seq_len": 1024, "hidden_dim": 2880, "num_experts": 32, "top_k": 4},
|
| 32 |
+
{"seq_len": 512, "hidden_dim": 1024, "num_experts": 32, "top_k": 4},
|
| 33 |
+
{"seq_len": 512, "hidden_dim": 2880, "num_experts": 16, "top_k": 2},
|
| 34 |
+
{"seq_len": 2048, "hidden_dim": 1024, "num_experts": 16, "top_k": 2},
|
| 35 |
+
{"seq_len": 768, "hidden_dim": 2048, "num_experts": 64, "top_k": 8},
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# Strategic batch sizes: small (1,2), medium (4,8), large (16,32), extra large (64)
|
| 39 |
+
batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
| 40 |
+
all_results = []
|
| 41 |
+
|
| 42 |
+
# Test each configuration
|
| 43 |
+
for config_idx, config in enumerate(configs):
|
| 44 |
+
seq_len = config["seq_len"]
|
| 45 |
+
hidden_dim = config["hidden_dim"]
|
| 46 |
+
num_experts = config["num_experts"]
|
| 47 |
+
top_k = config["top_k"]
|
| 48 |
+
|
| 49 |
+
print(f"\n{'=' * 70}")
|
| 50 |
+
print(
|
| 51 |
+
f"Config {config_idx + 1}: seq={seq_len}, hidden={hidden_dim}, experts={num_experts}, top_k={top_k}"
|
| 52 |
+
)
|
| 53 |
+
print(f"{'=' * 70}")
|
| 54 |
+
|
| 55 |
+
yamoe_times = []
|
| 56 |
+
reference_times = []
|
| 57 |
+
yamoe_memory = []
|
| 58 |
+
reference_memory = []
|
| 59 |
+
speedups = []
|
| 60 |
+
|
| 61 |
+
# Iterate over batch sizes
|
| 62 |
+
for batch_size in batch_sizes:
|
| 63 |
+
print(f"\nBatch size = {batch_size}")
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# Create logits for this batch size
|
| 67 |
+
logits = torch.randn(batch_size, seq_len, num_experts)
|
| 68 |
+
|
| 69 |
+
# Inline routing creation
|
| 70 |
+
weights, indices = torch.topk(logits, top_k, dim=-1)
|
| 71 |
+
weights = F.softmax(weights, dim=-1)
|
| 72 |
+
batch_seq = batch_size * seq_len
|
| 73 |
+
routing_weights = torch.zeros(
|
| 74 |
+
batch_seq, num_experts, device=logits.device, dtype=weights.dtype
|
| 75 |
+
)
|
| 76 |
+
flat_indices, flat_weights = (
|
| 77 |
+
indices.reshape(-1, top_k),
|
| 78 |
+
weights.reshape(-1, top_k),
|
| 79 |
+
)
|
| 80 |
+
batch_indices = (
|
| 81 |
+
torch.arange(batch_seq, device=logits.device)
|
| 82 |
+
.unsqueeze(1)
|
| 83 |
+
.expand(-1, top_k)
|
| 84 |
+
)
|
| 85 |
+
routing_weights[batch_indices, flat_indices] = flat_weights
|
| 86 |
+
router_indices = flat_indices
|
| 87 |
+
|
| 88 |
+
# Create tensors and convert to CUDA half precision
|
| 89 |
+
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda().half()
|
| 90 |
+
gate_up_proj = (
|
| 91 |
+
torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda().half()
|
| 92 |
+
)
|
| 93 |
+
gate_up_proj_bias = torch.ones(num_experts, 2 * hidden_dim).cuda().half()
|
| 94 |
+
down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda().half()
|
| 95 |
+
down_proj_bias = torch.ones(num_experts, hidden_dim).cuda().half()
|
| 96 |
+
logits, routing_weights = (
|
| 97 |
+
logits.cuda().half(),
|
| 98 |
+
routing_weights.cuda().half(),
|
| 99 |
+
)
|
| 100 |
+
router_indices = router_indices.cuda()
|
| 101 |
+
|
| 102 |
+
# Test Yamoe kernel first
|
| 103 |
+
yamoe_success = True
|
| 104 |
+
yamoe_time = None
|
| 105 |
+
yamoe_mem = None
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
# Warmup runs for yamoe
|
| 109 |
+
for _ in range(5):
|
| 110 |
+
_ = yamoe.experts(
|
| 111 |
+
hidden_states.view(-1, hidden_dim),
|
| 112 |
+
router_indices,
|
| 113 |
+
routing_weights.view(-1, num_experts),
|
| 114 |
+
gate_up_proj,
|
| 115 |
+
gate_up_proj_bias,
|
| 116 |
+
down_proj,
|
| 117 |
+
down_proj_bias,
|
| 118 |
+
seq_len,
|
| 119 |
+
num_experts,
|
| 120 |
+
top_k,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Time and measure memory for yamoe kernel
|
| 124 |
+
torch.cuda.synchronize()
|
| 125 |
+
torch.cuda.reset_peak_memory_stats()
|
| 126 |
+
|
| 127 |
+
yamoe_runs = []
|
| 128 |
+
for _ in range(10):
|
| 129 |
+
start = time.perf_counter()
|
| 130 |
+
output = yamoe.experts(
|
| 131 |
+
hidden_states.view(-1, hidden_dim),
|
| 132 |
+
router_indices,
|
| 133 |
+
routing_weights.view(-1, num_experts),
|
| 134 |
+
gate_up_proj,
|
| 135 |
+
gate_up_proj_bias,
|
| 136 |
+
down_proj,
|
| 137 |
+
down_proj_bias,
|
| 138 |
+
seq_len,
|
| 139 |
+
num_experts,
|
| 140 |
+
top_k,
|
| 141 |
+
)
|
| 142 |
+
torch.cuda.synchronize()
|
| 143 |
+
yamoe_runs.append((time.perf_counter() - start) * 1e3)
|
| 144 |
+
|
| 145 |
+
yamoe_time = sum(yamoe_runs) / len(yamoe_runs)
|
| 146 |
+
yamoe_mem = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 147 |
+
|
| 148 |
+
except RuntimeError as e:
|
| 149 |
+
if "out of memory" in str(e).lower():
|
| 150 |
+
print(f" Yamoe: OOM - skipping this batch size")
|
| 151 |
+
yamoe_success = False
|
| 152 |
+
else:
|
| 153 |
+
raise e
|
| 154 |
+
|
| 155 |
+
# Test reference model
|
| 156 |
+
ref_success = True
|
| 157 |
+
ref_time = None
|
| 158 |
+
ref_mem = None
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Setup reference model
|
| 162 |
+
config_obj = type("Config", (), {})()
|
| 163 |
+
config_obj.hidden_size = hidden_dim
|
| 164 |
+
config_obj.intermediate_size = 4 * hidden_dim
|
| 165 |
+
config_obj.num_local_experts = num_experts
|
| 166 |
+
|
| 167 |
+
model = reference.GptOssExperts(config_obj)
|
| 168 |
+
model.gate_up_proj.data = gate_up_proj
|
| 169 |
+
model.gate_up_proj_bias.data = gate_up_proj_bias
|
| 170 |
+
model.down_proj.data = down_proj
|
| 171 |
+
model.down_proj_bias.data = down_proj_bias
|
| 172 |
+
model = model.cuda().half()
|
| 173 |
+
model.eval()
|
| 174 |
+
|
| 175 |
+
# Warmup runs for reference
|
| 176 |
+
with torch.no_grad():
|
| 177 |
+
for _ in range(5):
|
| 178 |
+
_ = model(hidden_states, router_indices, routing_weights)
|
| 179 |
+
|
| 180 |
+
# Time and measure memory for reference model
|
| 181 |
+
torch.cuda.synchronize()
|
| 182 |
+
torch.cuda.reset_peak_memory_stats()
|
| 183 |
+
|
| 184 |
+
ref_runs = []
|
| 185 |
+
with torch.no_grad():
|
| 186 |
+
for _ in range(10):
|
| 187 |
+
start = time.perf_counter()
|
| 188 |
+
ref_output = model(
|
| 189 |
+
hidden_states, router_indices, routing_weights
|
| 190 |
+
)
|
| 191 |
+
torch.cuda.synchronize()
|
| 192 |
+
ref_runs.append((time.perf_counter() - start) * 1e3)
|
| 193 |
+
|
| 194 |
+
ref_time = sum(ref_runs) / len(ref_runs)
|
| 195 |
+
ref_mem = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 196 |
+
|
| 197 |
+
except RuntimeError as e:
|
| 198 |
+
if "out of memory" in str(e).lower():
|
| 199 |
+
print(f" Reference: OOM - skipping this batch size")
|
| 200 |
+
ref_success = False
|
| 201 |
+
else:
|
| 202 |
+
raise e
|
| 203 |
+
|
| 204 |
+
# Report results if both succeeded
|
| 205 |
+
if yamoe_success and ref_success:
|
| 206 |
+
yamoe_times.append(yamoe_time)
|
| 207 |
+
yamoe_memory.append(yamoe_mem)
|
| 208 |
+
reference_times.append(ref_time)
|
| 209 |
+
reference_memory.append(ref_mem)
|
| 210 |
+
speedup = ref_time / yamoe_time
|
| 211 |
+
speedups.append(speedup)
|
| 212 |
+
|
| 213 |
+
throughput_yamoe = (
|
| 214 |
+
(batch_size * seq_len * hidden_dim) / (yamoe_time / 1000) / 1e9
|
| 215 |
+
) # GFLOPS
|
| 216 |
+
throughput_ref = (
|
| 217 |
+
(batch_size * seq_len * hidden_dim) / (ref_time / 1000) / 1e9
|
| 218 |
+
) # GFLOPS
|
| 219 |
+
|
| 220 |
+
print(
|
| 221 |
+
f" Yamoe: {yamoe_time:.3f} ms / {yamoe_mem:.1f} MB / {throughput_yamoe:.2f} GFLOPS"
|
| 222 |
+
)
|
| 223 |
+
print(
|
| 224 |
+
f" Reference: {ref_time:.3f} ms / {ref_mem:.1f} MB / {throughput_ref:.2f} GFLOPS"
|
| 225 |
+
)
|
| 226 |
+
print(
|
| 227 |
+
f" Speedup: {speedup:.2f}x, Memory reduction: {ref_mem / yamoe_mem:.2f}x, "
|
| 228 |
+
f"Efficiency gain: {throughput_yamoe / throughput_ref:.2f}x"
|
| 229 |
+
)
|
| 230 |
+
elif yamoe_success and not ref_success:
|
| 231 |
+
# Only Yamoe succeeded - still record its results
|
| 232 |
+
yamoe_times.append(yamoe_time)
|
| 233 |
+
yamoe_memory.append(yamoe_mem)
|
| 234 |
+
# Use None/placeholder values for reference
|
| 235 |
+
reference_times.append(None)
|
| 236 |
+
reference_memory.append(None)
|
| 237 |
+
speedups.append(None)
|
| 238 |
+
|
| 239 |
+
throughput_yamoe = (
|
| 240 |
+
(batch_size * seq_len * hidden_dim) / (yamoe_time / 1000) / 1e9
|
| 241 |
+
)
|
| 242 |
+
print(
|
| 243 |
+
f" Yamoe: {yamoe_time:.3f} ms / {yamoe_mem:.1f} MB / {throughput_yamoe:.2f} GFLOPS"
|
| 244 |
+
)
|
| 245 |
+
print(f" Reference: OOM - unable to measure")
|
| 246 |
+
print(f" Yamoe runs successfully while Reference OOMs")
|
| 247 |
+
elif not yamoe_success and ref_success:
|
| 248 |
+
# Only Reference succeeded
|
| 249 |
+
yamoe_times.append(None)
|
| 250 |
+
yamoe_memory.append(None)
|
| 251 |
+
reference_times.append(ref_time)
|
| 252 |
+
reference_memory.append(ref_mem)
|
| 253 |
+
speedups.append(None)
|
| 254 |
+
|
| 255 |
+
throughput_ref = (
|
| 256 |
+
(batch_size * seq_len * hidden_dim) / (ref_time / 1000) / 1e9
|
| 257 |
+
)
|
| 258 |
+
print(f" Yamoe: OOM - unable to measure")
|
| 259 |
+
print(
|
| 260 |
+
f" Reference: {ref_time:.3f} ms / {ref_mem:.1f} MB / {throughput_ref:.2f} GFLOPS"
|
| 261 |
+
)
|
| 262 |
+
print(f" Reference runs successfully while Yamoe OOMs")
|
| 263 |
+
else:
|
| 264 |
+
# Both failed
|
| 265 |
+
yamoe_times.append(None)
|
| 266 |
+
yamoe_memory.append(None)
|
| 267 |
+
reference_times.append(None)
|
| 268 |
+
reference_memory.append(None)
|
| 269 |
+
speedups.append(None)
|
| 270 |
+
print(f" Both implementations OOM at batch_size={batch_size}")
|
| 271 |
+
|
| 272 |
+
except Exception as e:
|
| 273 |
+
print(f" Unexpected error at batch_size={batch_size}: {str(e)}")
|
| 274 |
+
# Add None values to maintain list consistency
|
| 275 |
+
yamoe_times.append(None)
|
| 276 |
+
yamoe_memory.append(None)
|
| 277 |
+
reference_times.append(None)
|
| 278 |
+
reference_memory.append(None)
|
| 279 |
+
speedups.append(None)
|
| 280 |
+
|
| 281 |
+
# Clear GPU memory after each batch size test
|
| 282 |
+
torch.cuda.empty_cache()
|
| 283 |
+
|
| 284 |
+
all_results.append(
|
| 285 |
+
{
|
| 286 |
+
"config": config,
|
| 287 |
+
"yamoe_times": yamoe_times,
|
| 288 |
+
"reference_times": reference_times,
|
| 289 |
+
"yamoe_memory": yamoe_memory,
|
| 290 |
+
"reference_memory": reference_memory,
|
| 291 |
+
"speedups": speedups,
|
| 292 |
+
}
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Create comprehensive visualization with time and memory
|
| 296 |
+
fig = plt.figure(figsize=(24, 16))
|
| 297 |
+
|
| 298 |
+
# Create 3 rows: time comparison, memory comparison, combined metrics
|
| 299 |
+
for config_idx, result in enumerate(all_results[:6]):
|
| 300 |
+
# Time comparison subplot
|
| 301 |
+
ax1 = plt.subplot(3, 6, config_idx + 1)
|
| 302 |
+
x = np.arange(len(batch_sizes))
|
| 303 |
+
width = 0.35
|
| 304 |
+
|
| 305 |
+
# Filter out None values for plotting
|
| 306 |
+
yamoe_times_filtered = [t if t is not None else 0 for t in result["yamoe_times"]]
|
| 307 |
+
ref_times_filtered = [t if t is not None else 0 for t in result["reference_times"]]
|
| 308 |
+
|
| 309 |
+
bars1 = ax1.bar(
|
| 310 |
+
x - width / 2,
|
| 311 |
+
yamoe_times_filtered,
|
| 312 |
+
width,
|
| 313 |
+
label="Yamoe",
|
| 314 |
+
color="#1f77b4",
|
| 315 |
+
alpha=0.8,
|
| 316 |
+
)
|
| 317 |
+
bars2 = ax1.bar(
|
| 318 |
+
x + width / 2,
|
| 319 |
+
ref_times_filtered,
|
| 320 |
+
width,
|
| 321 |
+
label="Reference",
|
| 322 |
+
color="#ff7f0e",
|
| 323 |
+
alpha=0.8,
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Add speedup annotations (only where both values exist)
|
| 327 |
+
for i, (y_time, r_time) in enumerate(
|
| 328 |
+
zip(result["yamoe_times"], result["reference_times"])
|
| 329 |
+
):
|
| 330 |
+
if y_time is not None and r_time is not None:
|
| 331 |
+
speedup = r_time / y_time
|
| 332 |
+
ax1.text(
|
| 333 |
+
i,
|
| 334 |
+
max(y_time, r_time) * 1.05,
|
| 335 |
+
f"{speedup:.1f}x",
|
| 336 |
+
ha="center",
|
| 337 |
+
va="bottom",
|
| 338 |
+
fontsize=7,
|
| 339 |
+
fontweight="bold",
|
| 340 |
+
color="green",
|
| 341 |
+
)
|
| 342 |
+
elif y_time is not None and r_time is None:
|
| 343 |
+
ax1.text(
|
| 344 |
+
i,
|
| 345 |
+
y_time * 1.05,
|
| 346 |
+
"Y-OK",
|
| 347 |
+
ha="center",
|
| 348 |
+
va="bottom",
|
| 349 |
+
fontsize=7,
|
| 350 |
+
fontweight="bold",
|
| 351 |
+
color="blue",
|
| 352 |
+
)
|
| 353 |
+
elif y_time is None and r_time is not None:
|
| 354 |
+
ax1.text(
|
| 355 |
+
i,
|
| 356 |
+
r_time * 1.05,
|
| 357 |
+
"R-OK",
|
| 358 |
+
ha="center",
|
| 359 |
+
va="bottom",
|
| 360 |
+
fontsize=7,
|
| 361 |
+
fontweight="bold",
|
| 362 |
+
color="orange",
|
| 363 |
+
)
|
| 364 |
+
else:
|
| 365 |
+
ax1.text(
|
| 366 |
+
i,
|
| 367 |
+
0.1,
|
| 368 |
+
"OOM",
|
| 369 |
+
ha="center",
|
| 370 |
+
va="bottom",
|
| 371 |
+
fontsize=7,
|
| 372 |
+
fontweight="bold",
|
| 373 |
+
color="red",
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
ax1.set_ylabel("Time (ms)", fontsize=9)
|
| 377 |
+
ax1.set_yscale("log")
|
| 378 |
+
ax1.set_xticks(x)
|
| 379 |
+
ax1.set_xticklabels(batch_sizes, fontsize=8)
|
| 380 |
+
ax1.grid(True, alpha=0.3, axis="y")
|
| 381 |
+
|
| 382 |
+
config = result["config"]
|
| 383 |
+
ax1.set_title(
|
| 384 |
+
f"Time: seq={config['seq_len']}, h={config['hidden_dim']}, e={config['num_experts']}",
|
| 385 |
+
fontsize=8,
|
| 386 |
+
fontweight="bold",
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
if config_idx == 0:
|
| 390 |
+
ax1.legend(loc="upper left", fontsize=8)
|
| 391 |
+
|
| 392 |
+
# Memory comparison subplot
|
| 393 |
+
ax2 = plt.subplot(3, 6, config_idx + 7)
|
| 394 |
+
|
| 395 |
+
# Filter out None values for memory plotting
|
| 396 |
+
yamoe_mem_filtered = [m if m is not None else 0 for m in result["yamoe_memory"]]
|
| 397 |
+
ref_mem_filtered = [m if m is not None else 0 for m in result["reference_memory"]]
|
| 398 |
+
|
| 399 |
+
bars3 = ax2.bar(
|
| 400 |
+
x - width / 2,
|
| 401 |
+
yamoe_mem_filtered,
|
| 402 |
+
width,
|
| 403 |
+
label="Yamoe",
|
| 404 |
+
color="#2ca02c",
|
| 405 |
+
alpha=0.8,
|
| 406 |
+
)
|
| 407 |
+
bars4 = ax2.bar(
|
| 408 |
+
x + width / 2,
|
| 409 |
+
ref_mem_filtered,
|
| 410 |
+
width,
|
| 411 |
+
label="Reference",
|
| 412 |
+
color="#d62728",
|
| 413 |
+
alpha=0.8,
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
# Add memory reduction annotations (only where both values exist)
|
| 417 |
+
for i, (y_mem, r_mem) in enumerate(
|
| 418 |
+
zip(result["yamoe_memory"], result["reference_memory"])
|
| 419 |
+
):
|
| 420 |
+
if y_mem is not None and r_mem is not None:
|
| 421 |
+
reduction = r_mem / y_mem
|
| 422 |
+
ax2.text(
|
| 423 |
+
i,
|
| 424 |
+
max(y_mem, r_mem) * 1.05,
|
| 425 |
+
f"{reduction:.1f}x",
|
| 426 |
+
ha="center",
|
| 427 |
+
va="bottom",
|
| 428 |
+
fontsize=7,
|
| 429 |
+
fontweight="bold",
|
| 430 |
+
color="purple",
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
ax2.set_ylabel("Memory (MB)", fontsize=9)
|
| 434 |
+
ax2.set_yscale("log")
|
| 435 |
+
ax2.set_xticks(x)
|
| 436 |
+
ax2.set_xticklabels(batch_sizes, fontsize=8)
|
| 437 |
+
ax2.grid(True, alpha=0.3, axis="y")
|
| 438 |
+
ax2.set_title(
|
| 439 |
+
f"Memory: seq={config['seq_len']}, h={config['hidden_dim']}, e={config['num_experts']}",
|
| 440 |
+
fontsize=8,
|
| 441 |
+
fontweight="bold",
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
if config_idx == 0:
|
| 445 |
+
ax2.legend(loc="upper left", fontsize=8)
|
| 446 |
+
|
| 447 |
+
# Combined speedup and memory efficiency subplot
|
| 448 |
+
ax3 = plt.subplot(3, 6, config_idx + 13)
|
| 449 |
+
|
| 450 |
+
# Calculate speedups and memory reductions, handling None values
|
| 451 |
+
valid_speedups = []
|
| 452 |
+
valid_mem_reductions = []
|
| 453 |
+
valid_batch_sizes_speedup = []
|
| 454 |
+
valid_batch_sizes_mem = []
|
| 455 |
+
|
| 456 |
+
for i, (r, y) in enumerate(zip(result["reference_times"], result["yamoe_times"])):
|
| 457 |
+
if r is not None and y is not None:
|
| 458 |
+
valid_speedups.append(r / y)
|
| 459 |
+
valid_batch_sizes_speedup.append(batch_sizes[i])
|
| 460 |
+
|
| 461 |
+
for i, (r, y) in enumerate(zip(result["reference_memory"], result["yamoe_memory"])):
|
| 462 |
+
if r is not None and y is not None:
|
| 463 |
+
valid_mem_reductions.append(r / y)
|
| 464 |
+
valid_batch_sizes_mem.append(batch_sizes[i])
|
| 465 |
+
|
| 466 |
+
if valid_speedups:
|
| 467 |
+
ax3.plot(
|
| 468 |
+
valid_batch_sizes_speedup,
|
| 469 |
+
valid_speedups,
|
| 470 |
+
"o-",
|
| 471 |
+
label="Time Speedup",
|
| 472 |
+
color="green",
|
| 473 |
+
linewidth=2,
|
| 474 |
+
markersize=6,
|
| 475 |
+
)
|
| 476 |
+
if valid_mem_reductions:
|
| 477 |
+
ax3.plot(
|
| 478 |
+
valid_batch_sizes_mem,
|
| 479 |
+
valid_mem_reductions,
|
| 480 |
+
"s-",
|
| 481 |
+
label="Memory Reduction",
|
| 482 |
+
color="purple",
|
| 483 |
+
linewidth=2,
|
| 484 |
+
markersize=6,
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
ax3.set_xlabel("Batch Size", fontsize=9)
|
| 488 |
+
ax3.set_ylabel("Improvement Factor", fontsize=9)
|
| 489 |
+
ax3.set_xticks(batch_sizes)
|
| 490 |
+
ax3.grid(True, alpha=0.3)
|
| 491 |
+
ax3.axhline(y=1, color="gray", linestyle="--", alpha=0.5)
|
| 492 |
+
ax3.set_title(
|
| 493 |
+
f"Improvements: seq={config['seq_len']}, h={config['hidden_dim']}",
|
| 494 |
+
fontsize=8,
|
| 495 |
+
fontweight="bold",
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
if config_idx == 0:
|
| 499 |
+
ax3.legend(loc="upper left", fontsize=8)
|
| 500 |
+
|
| 501 |
+
plt.suptitle(
|
| 502 |
+
"MoE Performance & Memory Comparison - Yamoe vs Reference",
|
| 503 |
+
fontsize=16,
|
| 504 |
+
fontweight="bold",
|
| 505 |
+
y=0.98,
|
| 506 |
+
)
|
| 507 |
+
plt.tight_layout()
|
| 508 |
+
plt.savefig("moe_performance_comparison.png", dpi=150, bbox_inches="tight")
|
| 509 |
+
plt.show()
|
| 510 |
+
|
| 511 |
+
# Removed heatmap section per user request
|
| 512 |
+
|
| 513 |
+
# Print detailed summary
|
| 514 |
+
print("\n" + "=" * 80)
|
| 515 |
+
print("DETAILED SUMMARY")
|
| 516 |
+
print("=" * 80)
|
| 517 |
+
|
| 518 |
+
for idx, result in enumerate(all_results[:6]):
|
| 519 |
+
config = result["config"]
|
| 520 |
+
print(f"\nConfiguration {idx + 1}:")
|
| 521 |
+
print(
|
| 522 |
+
f" Parameters: seq_len={config['seq_len']}, hidden_dim={config['hidden_dim']}, "
|
| 523 |
+
f"experts={config['num_experts']}, top_k={config['top_k']}"
|
| 524 |
+
)
|
| 525 |
+
# Handle None values in speedups
|
| 526 |
+
valid_speedups = [s for s in result["speedups"] if s is not None]
|
| 527 |
+
if valid_speedups:
|
| 528 |
+
print(f" Average Speedup: {sum(valid_speedups) / len(valid_speedups):.2f}x")
|
| 529 |
+
max_speedup = max(valid_speedups)
|
| 530 |
+
min_speedup = min(valid_speedups)
|
| 531 |
+
max_idx = result["speedups"].index(max_speedup)
|
| 532 |
+
min_idx = result["speedups"].index(min_speedup)
|
| 533 |
+
print(f" Max Speedup: {max_speedup:.2f}x at batch_size={batch_sizes[max_idx]}")
|
| 534 |
+
print(f" Min Speedup: {min_speedup:.2f}x at batch_size={batch_sizes[min_idx]}")
|
| 535 |
+
else:
|
| 536 |
+
print(" No valid speedup measurements (all OOM)")
|
readme_example.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = "==3.10"
|
| 3 |
+
# dependencies = ["torch==2.7.0", "triton", "numpy", "kernels"]
|
| 4 |
+
# [tool.uv.sources]
|
| 5 |
+
# kernels = { git = "https://github.com/huggingface/kernels.git" }
|
| 6 |
+
# ///
|
| 7 |
+
|
| 8 |
+
import time
|
| 9 |
+
import torch
|
| 10 |
+
from kernels import get_local_kernel
|
| 11 |
+
from kernels import get_kernel
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from torch.nn import functional as F
|
| 14 |
+
|
| 15 |
+
# Set seeds and deterministic flags for reproducibility
|
| 16 |
+
torch.manual_seed(42)
|
| 17 |
+
torch.cuda.manual_seed(42)
|
| 18 |
+
torch.cuda.manual_seed_all(42)
|
| 19 |
+
torch.backends.cudnn.deterministic = True
|
| 20 |
+
torch.backends.cudnn.benchmark = False
|
| 21 |
+
|
| 22 |
+
yamoe = get_kernel("drbh/yamoe", revision="v0.1.0")
|
| 23 |
+
|
| 24 |
+
# Configuration
|
| 25 |
+
batch_size, seq_len, hidden_dim = 16, 256, 2880
|
| 26 |
+
num_experts, top_k = 8, 2
|
| 27 |
+
|
| 28 |
+
# Create routing weights
|
| 29 |
+
logits = torch.randn(batch_size, seq_len, num_experts)
|
| 30 |
+
probs = F.softmax(logits, dim=-1)
|
| 31 |
+
weights, indices = torch.topk(probs, top_k, dim=-1)
|
| 32 |
+
|
| 33 |
+
batch_seq = batch_size * seq_len
|
| 34 |
+
routing_weights = torch.zeros(batch_seq, num_experts, dtype=weights.dtype)
|
| 35 |
+
flat_indices, flat_weights = indices.reshape(-1, top_k), weights.reshape(-1, top_k)
|
| 36 |
+
batch_indices = torch.arange(batch_seq).unsqueeze(1).expand(-1, top_k)
|
| 37 |
+
routing_weights[batch_indices, flat_indices] = flat_weights
|
| 38 |
+
|
| 39 |
+
# Create model tensors
|
| 40 |
+
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda()
|
| 41 |
+
gate_up_proj = torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda()
|
| 42 |
+
gate_up_proj_bias = torch.zeros(num_experts, 2 * hidden_dim).cuda()
|
| 43 |
+
down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda()
|
| 44 |
+
down_proj_bias = torch.zeros(num_experts, hidden_dim).cuda()
|
| 45 |
+
routing_weights = routing_weights.cuda()
|
| 46 |
+
router_indices = flat_indices.cuda()
|
| 47 |
+
|
| 48 |
+
# Warmup
|
| 49 |
+
for _ in range(5):
|
| 50 |
+
_ = yamoe.experts(
|
| 51 |
+
hidden_states.view(-1, hidden_dim),
|
| 52 |
+
router_indices,
|
| 53 |
+
routing_weights.view(-1, num_experts),
|
| 54 |
+
gate_up_proj,
|
| 55 |
+
gate_up_proj_bias,
|
| 56 |
+
down_proj,
|
| 57 |
+
down_proj_bias,
|
| 58 |
+
seq_len,
|
| 59 |
+
num_experts,
|
| 60 |
+
top_k,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Benchmark
|
| 64 |
+
torch.cuda.synchronize()
|
| 65 |
+
torch.cuda.reset_peak_memory_stats()
|
| 66 |
+
start = time.perf_counter()
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
output = yamoe.experts(
|
| 70 |
+
hidden_states.view(-1, hidden_dim),
|
| 71 |
+
router_indices,
|
| 72 |
+
routing_weights.view(-1, num_experts),
|
| 73 |
+
gate_up_proj,
|
| 74 |
+
gate_up_proj_bias,
|
| 75 |
+
down_proj,
|
| 76 |
+
down_proj_bias,
|
| 77 |
+
seq_len,
|
| 78 |
+
num_experts,
|
| 79 |
+
top_k,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
torch.cuda.synchronize()
|
| 83 |
+
elapsed_ms = (time.perf_counter() - start) * 1e3
|
| 84 |
+
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
|
| 85 |
+
|
| 86 |
+
print(f"Output: sum={output.sum().item():.1f}, min={output.min().item():.1f}, max={output.max().item():.1f}")
|
| 87 |
+
print(f"First 3: {output.view(-1)[:3].tolist()}")
|
| 88 |
+
print(f"Time: {elapsed_ms:.1f}ms, Memory: {peak_mem_mb:.0f}MB")
|