Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- HuggingFaceM4/the_cauldron
|
| 6 |
+
- HuggingFaceM4/Docmatix
|
| 7 |
+
- lmms-lab/LLaVA-OneVision-Data
|
| 8 |
+
- lmms-lab/M4-Instruct-Data
|
| 9 |
+
- HuggingFaceFV/finevideo
|
| 10 |
+
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
|
| 11 |
+
- lmms-lab/LLaVA-Video-178K
|
| 12 |
+
- orrzohar/Video-STaR
|
| 13 |
+
- Mutonix/Vript
|
| 14 |
+
- TIGER-Lab/VISTA-400K
|
| 15 |
+
- Enxin/MovieChat-1K_train
|
| 16 |
+
- ShareGPT4Video/ShareGPT4Video
|
| 17 |
+
pipeline_tag: image-text-to-text
|
| 18 |
+
language:
|
| 19 |
+
- en
|
| 20 |
+
base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct
|
| 21 |
+
tags:
|
| 22 |
+
- openvino
|
| 23 |
+
- nncf
|
| 24 |
+
- 8-bit
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
This model is a quantized version of [`HuggingFaceTB/SmolVLM2-500M-Video-Instruct`](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
|
| 28 |
+
|
| 29 |
+
First make sure you have `optimum-intel` installed:
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
pip install optimum[openvino]
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
To load your model you can do as follows:
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from optimum.intel import OVModelForVisualCausalLM
|
| 39 |
+
|
| 40 |
+
model_id = "echarlaix/SmolVLM2-500M-Video-Instruct-openvino-8bit-woq-data-free"
|
| 41 |
+
model = OVModelForVisualCausalLM.from_pretrained(model_id)
|
| 42 |
+
```
|