egorchistov commited on
Commit
bd8e677
·
verified ·
1 Parent(s): 3470ec3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -6
README.md CHANGED
@@ -22,22 +22,26 @@ base_model:
22
 
23
  ## 🛠️ Usage
24
 
 
 
25
  ```shell
26
- git clone https://github.com/msu-video-group/memfof.git
27
- cd memfof
28
- pip3 install -r requirements.txt
29
  ```
30
 
 
 
31
  ```python
32
  import torch
33
- from core.memfof import MEMFOF
34
 
35
  device = "cuda" if torch.cuda.is_available() else "cpu"
36
  model = MEMFOF.from_pretrained("egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH-spring").eval().to(device)
37
 
38
  with torch.inference_mode():
39
- example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920]
40
- backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1) # [B=1, C=2, H=1080, W=1920]
 
 
41
  ```
42
 
43
  ## 📚 Citation
 
22
 
23
  ## 🛠️ Usage
24
 
25
+ Install MEMFOF via the package manager:
26
+
27
  ```shell
28
+ pip3 install git+https://github.com/msu-video-group/memfof
 
 
29
  ```
30
 
31
+ Then use the following snippet to compute backward and forward optical flow for three consecutive frames:
32
+
33
  ```python
34
  import torch
35
+ from memfof import MEMFOF
36
 
37
  device = "cuda" if torch.cuda.is_available() else "cpu"
38
  model = MEMFOF.from_pretrained("egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH-spring").eval().to(device)
39
 
40
  with torch.inference_mode():
41
+ # [B=1, T=3, C=3, H=1080, W=1920]
42
+ example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device)
43
+ # [B=1, C=2, H=1080, W=1920]
44
+ backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1)
45
  ```
46
 
47
  ## 📚 Citation