File size: 2,111 Bytes
311f538 70b774e af0317d 0761a63 91a6f14 28cb646 af0317d 91a6f14 28cb646 311f538 70b774e 6f2e020 70b774e 6f2e020 70b774e 6c6c9aa 70b774e 87b740b 70b774e 6c6c9aa 70b774e 87b740b 70b774e 6f2e020 70b774e 87b740b 91a6f14 af0317d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language:
- en
license: bsd-3-clause
tags:
- arxiv:2506.23151
- optical-flow-estimation
- optical-flow
pipeline_tag: image-to-image
library_name: pytorch
base_model:
- egorchistov/optical-flow-MEMFOF-Tartan-T
---
# MEMFOF-Tartan-T-TSKH
<a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a> | <a href="https://huggingface.co/spaces/egorchistov/optical-flow-MEMFOF" style="text-decoration: none;">π€ Demo</a>
π **MEMFOF** is a **memory-efficient optical flow method** for **Full HD video** that combines **high accuracy** with **low VRAM usage**.
β
**Note:** This particular checkpoint is intended **for real-world videos** β it is trained with **higher diversity and robustness** in mind.
## π οΈ Usage
Install MEMFOF via the package manager:
```shell
pip3 install git+https://github.com/msu-video-group/memfof
```
Then use the following snippet to compute backward and forward optical flow for three consecutive frames:
```python
import torch
from memfof import MEMFOF
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MEMFOF.from_pretrained("egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH").eval().to(device)
with torch.inference_mode():
# [B=1, T=3, C=3, H=1080, W=1920]
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device)
# [B=1, C=2, H=1080, W=1920]
backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1)
```
## π Citation
```
@article{bargatin2025memfof,
title={MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation},
author={Bargatin, Vladislav and Chistov, Egor and Yakovenko, Alexander and Vatolin, Dmitriy},
journal={arXiv preprint arXiv:2506.23151},
year={2025}
}
``` |