Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- starmpcc/Asclepius-Synthetic-Clinical-Notes
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
---
|
| 8 |
+
## Overview
|
| 9 |
+
|
| 10 |
+
This model, elucidator8918/clinical-ehr-prototype-0.2_GGUF is a Q5_K_M type GGUF and is tailored for clinical documentation, based on the Mistral-7B-Instruct-v0.3-sharded architecture fine-tuned on the Asclepius-Synthetic-Clinical-Notes dataset.
|
| 11 |
+
|
| 12 |
+
## Key Information
|
| 13 |
+
|
| 14 |
+
- **Model Name**: Mistral-7B-Instruct-v0.3-sharded
|
| 15 |
+
- **Fine-tuned Model Name**: elucidator8918/clinical-ehr-prototype-0.2_GGUF
|
| 16 |
+
- **Dataset**: starmpcc/Asclepius-Synthetic-Clinical-Notes
|
| 17 |
+
- **Language**: English (en)
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
- **LoRA Parameters (QLoRA):**
|
| 22 |
+
- LoRA attention dimension: 64
|
| 23 |
+
- Alpha parameter for LoRA scaling: 16
|
| 24 |
+
- Dropout probability for LoRA layers: 0.1
|
| 25 |
+
|
| 26 |
+
- **bitsandbytes Parameters:**
|
| 27 |
+
- Activate 4-bit precision base model loading
|
| 28 |
+
- Compute dtype for 4-bit base models: float16
|
| 29 |
+
- Quantization type: nf4
|
| 30 |
+
- Activate nested quantization for 4-bit base models: No
|
| 31 |
+
|
| 32 |
+
- **TrainingArguments Parameters:**
|
| 33 |
+
- Number of training epochs: 1
|
| 34 |
+
- Batch size per GPU for training: 4
|
| 35 |
+
- Batch size per GPU for evaluation: 4
|
| 36 |
+
- Gradient accumulation steps: 1
|
| 37 |
+
- Enable gradient checkpointing: Yes
|
| 38 |
+
- Maximum gradient norm: 0.3
|
| 39 |
+
- Initial learning rate: 2e-4
|
| 40 |
+
- Weight decay: 0.001
|
| 41 |
+
- Optimizer: paged_adamw_32bit
|
| 42 |
+
- Learning rate scheduler type: cosine
|
| 43 |
+
- Warm-up ratio: 0.03
|
| 44 |
+
- Group sequences into batches with the same length: Yes
|
| 45 |
+
|
| 46 |
+
## License
|
| 47 |
+
|
| 48 |
+
This model is released under the MIT License.
|