Upload PPO LunarLander-v2 trained agent with 10M timesteps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 302.16 +/- 17.89
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e5bed3dbf40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e5bed3e0040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e5bed3e00d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e5bed3e0160>", "_build": "<function ActorCriticPolicy._build at 0x7e5bed3e01f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e5bed3e0280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e5bed3e0310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e5bed3e03a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e5bed3e0430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e5bed3e04c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e5bed3e0550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e5bed3e05e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e5bed576840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701438508933284224, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNpNTxD2Ru8Gop8PVl6GL4SDYq8mJktvQAAgD8AAIA/ANJSPaTaS7vqlN28JIsDPScTojuCQ8q8AACAPwAAgD9mDlc9FHiSuooYcrpk9Ko1WTjaOSz0izkAAIA/AACAPwD8uDtchwy6G4ZZOZ6zXrYEC6g7mvN7uAAAgD8AAIA/ZkKKO1KY6rk48tU6LFjDNyvvHrsbY923AACAPwAAgD+TdD++uumbPwacwr4D0rS+9dVovrrg2r0AAAAAAAAAAADBtTxI46a6sJWOu2CnWbZ3GI85NVCjOgAAgD8AAIA/ZoodvFxjWrphU7O3V0q/slFomLj7ztI2AACAPwAAgD/NKg4+MYynPkMVLb2mn2q+4cogPeMcNDsAAAAAAAAAAGale70pQFW6nMwsune6d7Q2zk065lhLOQAAgD8AAIA/ZmQwvBTslrrehUE7LcwLNlRhyjp+Yl+6AACAPwAAgD/Qvmm+W6THvPJ7gj4kRbm928RZPlfzQz8AAAAAAACAPzPz2jwpSBe6q+IFuBE/kbPZAo87fkIcNwAAgD8AAIA/M2aNPXtyl7oC0n48/iGOtfTc/zlKroK0AACAPwAAgD8zG7y99ixeuhFAiTnXf8Q0Vd84O8nsnbgAAIA/AACAP2YijDzDoTy6TivqumsCFbZoWaA6ml4KOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSoySeRPoGMAWyUTegDjAF0lEdAlQG4lQdjonV9lChoBkdAYEO3G4qgAmgHTegDaAhHQJUvbfLs8gZ1fZQoaAZHQGG0stCiRGNoB03oA2gIR0CVMOQhOgxrdX2UKGgGR0BbqNqxkd3jaAdN6ANoCEdAlTUYG6f8M3V9lChoBkdAZxOHNX5nDmgHTegDaAhHQJU4iQtBfKJ1fZQoaAZHQF5cqlxffGdoB03oA2gIR0CVOPA8SwnqdX2UKGgGR0BgTgToMa0haAdN6ANoCEdAlT0nZf2K23V9lChoBkdAY1+jmjj7ymgHTegDaAhHQJVBT9tMwlB1fZQoaAZHQGCa2TX8O09oB03oA2gIR0CVTaMhHLA6dX2UKGgGR0BjVonYxtYTaAdN6ANoCEdAlU3cajvd/XV9lChoBkdAYb93225QQGgHTegDaAhHQJVTogeRxLl1fZQoaAZHQGDSnvlU6xRoB03oA2gIR0CVWAX+ERJ3dX2UKGgGR0BlU513dKukaAdN6ANoCEdAlVldjG1hLHV9lChoBkdAYx3Bj4Hoo2gHTegDaAhHQJVm2QHRkVh1fZQoaAZHQGClTS1E3KloB03oA2gIR0CVaEot+TePdX2UKGgGR0BjXUKCxu89aAdN6ANoCEdAlWiFcUuct3V9lChoBkdAZEBVR1oxpWgHTegDaAhHQJVqL/S6UaB1fZQoaAZHQGOhAdn003xoB03oA2gIR0CVl5zFuNxVdX2UKGgGR0BlAbUqhDgJaAdN6ANoCEdAlZknSOR1YHV9lChoBkdAYa93h4t6HGgHTegDaAhHQJWdVYyO7xx1fZQoaAZHQGDVScLBsRBoB03oA2gIR0CVoMrJKaoddX2UKGgGR0Bl8zuSfUWmaAdN6ANoCEdAlaEwIt16mnV9lChoBkdAX2t0EHMUy2gHTegDaAhHQJWlJ5UtI091fZQoaAZHQFu/j8k2P1doB03oA2gIR0CVqSlIVdondX2UKGgGR0Bk9LfLs8gZaAdN6ANoCEdAlbKuyeI2wXV9lChoBkdAYHH6zE74jGgHTegDaAhHQJWy3QfIS151fZQoaAZHQGPLW6TW5H5oB03oA2gIR0CVuRFsHjZMdX2UKGgGR0Bl06rNnoPkaAdN6ANoCEdAlb9R9XtBwHV9lChoBkdAYfnFR51Ng2gHTegDaAhHQJXBMJXyRSx1fZQoaAZHQGP9S13MY/FoB03oA2gIR0CVzzE2YOUddX2UKGgGR0BlsHUjLSuyaAdN6ANoCEdAldCX31zySXV9lChoBkdAYtGPnSv1UWgHTegDaAhHQJXQ1l+Vkc11fZQoaAZHQGDKE8zQ/otoB03oA2gIR0CV0nSXdCVsdX2UKGgGR0Be0K2SdOIqaAdN6ANoCEdAlf9dPxhDxHV9lChoBkdAYgrCIk7fYWgHTegDaAhHQJYA2k+HJtB1fZQoaAZHQGB5YVRDTjNoB03oA2gIR0CWBQ2DQJHBdX2UKGgGR0Bg7V2vB7/oaAdN6ANoCEdAlgha/dqL0nV9lChoBkdAYD8V/MGHHmgHTegDaAhHQJYItqUNayN1fZQoaAZHQGVPe6y0KJFoB03oA2gIR0CWDHdyT6i1dX2UKGgGR0Bd6Xdfsu3+aAdN6ANoCEdAlhAVfE4vOHV9lChoBkdAYtLjGT9sJ2gHTegDaAhHQJYYrBuXNTt1fZQoaAZHQGHRYuTRplBoB03oA2gIR0CWGNRPoFFEdX2UKGgGR0Bii0DZDiOvaAdN6ANoCEdAlh0ZxrBTGnV9lChoBkdAYrVg9eQdS2gHTegDaAhHQJYhXuy/sVt1fZQoaAZHQGQv9/jKgZloB03oA2gIR0CWIsBZ6lchdX2UKGgGR0BitDcM3IdVaAdN6ANoCEdAljKZ/Tb35HV9lChoBkdAZTRx1gYxcmgHTegDaAhHQJY0l4s3AEd1fZQoaAZHQGZwYpUgjhVoB03oA2gIR0CWNOqTbFjvdX2UKGgGR0BhS9mBe5WjaAdN6ANoCEdAljcFEAo5P3V9lChoBkdAMsZrP+n622gHS/loCEdAllwXdO6/ZnV9lChoBkdAZAuUY8+zMWgHTegDaAhHQJZfb4j8k2R1fZQoaAZHQGLCIHcDbJxoB03oA2gIR0CWYYE1l5GCdX2UKGgGR0Bk4LJdSl3yaAdN6ANoCEdAlmccrI5o5HV9lChoBkdAYOkWkadc0WgHTegDaAhHQJZrkzpHI6t1fZQoaAZHQGYcsTWXkYJoB03oA2gIR0CWbBVFx4pudX2UKGgGR0Bjm6RSxZ+yaAdN6ANoCEdAlnEY3FUADXV9lChoBkdAXs1BjWkJr2gHTegDaAhHQJZ0+7kGRmt1fZQoaAZHQGCQ14gRsdloB03oA2gIR0CWfqHBUJfIdX2UKGgGR0Bil01uR9w4aAdN6ANoCEdAln7RZuAI6nV9lChoBkdAZE2Xm/336GgHTegDaAhHQJaD3bcoH9p1fZQoaAZHQF1VYht+CshoB03oA2gIR0CWiJ7MPjGUdX2UKGgGR0Bf3aP4mCyyaAdN6ANoCEdAlooKNyYG+3V9lChoBkdAZCW4S6DoQmgHTegDaAhHQJaYlMCcPOJ1fZQoaAZHQGUr8iGFi8ZoB03oA2gIR0CWmqgeii7DdX2UKGgGR0BhKQXdj5KwaAdN6ANoCEdAlpsF90A93nV9lChoBkdAZaLG0eEIxGgHTegDaAhHQJbJVMIu5Bl1fZQoaAZHQGSriUHIIWxoB03oA2gIR0CWzN5HmRvFdX2UKGgGR0Bd8JcLSeAeaAdN6ANoCEdAls6dbkfcOHV9lChoBkdAYhTVbzK9wmgHTegDaAhHQJbUk8A7xNJ1fZQoaAZHQGBp7VJ+UhVoB03oA2gIR0CW2dR9PUKBdX2UKGgGR0BoBJ/mT1TSaAdN6ANoCEdAltp66nR9gHV9lChoBkdAY1KE/SpiqmgHTegDaAhHQJbg8uSOinJ1fZQoaAZHQGZH4WUKRdRoB03oA2gIR0CW5ccmShaldX2UKGgGR0BitrJyQxN7aAdN6ANoCEdAlvAhbGFSKnV9lChoBkdAYTK1xbSql2gHTegDaAhHQJbwUBzV+Zx1fZQoaAZHQGKcuMl1KXhoB03oA2gIR0CW9Sr92ovSdX2UKGgGR0Bii1O6/ZdwaAdN6ANoCEdAlvmYKlYU4HV9lChoBkdAY2Okadc0L2gHTegDaAhHQJb63MMZxaR1fZQoaAZHQF8LsunMt9RoB03oA2gIR0CXB8fa6BiDdX2UKGgGR0BgtScPOIIoaAdN6ANoCEdAlwk4nWrfcnV9lChoBkdAZ1geHSF492gHTegDaAhHQJcJj850bLl1fZQoaAZHQEaJG9YfW+ZoB0v7aAhHQJcNmZtvXK91fZQoaAZHQEP2bYK6WgRoB00NAWgIR0CXESmU4aP0dX2UKGgGR0BAWhX0XgtOaAdL7GgIR0CXHbWLgn+idX2UKGgGR0BjjA7eVLSNaAdN6ANoCEdAlzVJlSS/03V9lChoBkdAZPqnUDuBtmgHTegDaAhHQJc3+6OHWSV1fZQoaAZHQGY2jBEa2ndoB03oA2gIR0CXOTC+10DEdX2UKGgGR0Bjs4RTS9dvaAdN6ANoCEdAlzy4jSofjnV9lChoBkdAZ3q+MZP2wmgHTegDaAhHQJc/g2zfJmx1fZQoaAZHQGVMQQtjCpFoB03oA2gIR0CXP+Gd7OVxdX2UKGgGR0Bgut7SiM5waAdN6ANoCEdAl0P95Y5ksnV9lChoBkdAZr8zru6VdGgHTegDaAhHQJdJEkdFOO91fZQoaAZHQGYGrr5ZbINoB03oA2gIR0CXVHFdcB2fdX2UKGgGR0BeQaxPfsNUaAdN6ANoCEdAl1SdCE6DG3V9lChoBkdAZFAKpkwvg2gHTegDaAhHQJdZQUHpr1x1fZQoaAZHQGGlYgRsdktoB03oA2gIR0CXbwBU70WedX2UKGgGR0BlvJn3+MqCaAdN6ANoCEdAl29DakAPu3V9lChoBkdAZN9LzPKMemgHTegDaAhHQJdylPKuB+Z1fZQoaAZHQGULSHM2WIJoB03oA2gIR0CXdVYwqRU4dX2UKGgGR0BmHcj3VTaTaAdN6ANoCEdAl4JADV6NVHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b35f86a9750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b35f86a97e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b35f86a9870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b35f86a9900>", "_build": "<function ActorCriticPolicy._build at 0x7b35f86a9990>", "forward": "<function ActorCriticPolicy.forward at 0x7b35f86a9a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b35f86a9ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b35f86a9b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7b35f86a9bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b35f86a9c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b35f86a9cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b35f86a9d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b35f864a180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701460663781396140, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPDsbo8wVM+ltLsvaErIL+zsds8mmrevAAAAAAAAAAAYNk/PiBfjD+nR7s+JzEwvwqEoj7AZl4+AAAAAAAAAAAzxZm8np5bP4B9Bb30Yni/uqyLvfIr7DwAAAAAAAAAADPOMj1In5O6lQAqM4GV8q5OhHE6Rk3NswAAgD8AAIA/zczIu1zbS7oACD8zb+wBsHBZVjpAL8OzAACAPwAAgD8zTzK87JWTu77Reb2Oa3y+zTkXvVO1lz4AAIA/AAAAALNoUz1OpYm8HV9BPuQqez26eZo8wXSXOwAAgD8AAIA/pkWkPRsN1j0hsYq+E5PLvuF++Twq9vK9AAAAAAAAAACGDxE+Lc+FP6As1D7+pDS/7GyNPmrBmT4AAAAAAAAAADPFS7yPwgW4g6IwMwS4ySu+m8E7uC/UswAAgD8AAIA/ZqyGvJYKrj/2ozi9V6zyvjaWRb3gn2e9AAAAAAAAAABmKVU9fkybPcMmcL6aTba+sm4xPP8/vb0AAAAAAAAAALpcJb77mDM/mKGlvOuuNL8SDdW+bst2PQAAAAAAAAAARk4nPhZUij7st7O+6tz7vtuk6D3fwhi+AAAAAAAAAAAAqIo716NNt+qyLry6W6g4GjOtujOgH7gAAIA/AACAP2Yl5T2E5Uc+QZ2yvkcW5b7xCBU9nacivgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIpaGxlg+iMAWyUS6GMAXSUR0C9+RKdMCcPdX2UKGgGR0ByxNcRlHz6aAdLv2gIR0C9+RL2USqVdX2UKGgGR0ByWPcIqsltaAdLnmgIR0C9+R+xOclPdX2UKGgGR0Bx23pqynk1aAdLsGgIR0C9+SOJpFkQdX2UKGgGR0BxsxPHktEoaAdLl2gIR0C9+TmOU+s6dX2UKGgGR0Bz/QfV7Qb/aAdLvmgIR0C9+U2ETQE7dX2UKGgGR0Byfam4y44IaAdLpmgIR0C9+VOcH4XXdX2UKGgGR0ByXNnwob4raAdLiGgIR0C9+YM4cWCVdX2UKGgGR0Bzx0byYoiLaAdL1WgIR0C9+ZprHlwMdX2UKGgGR0Bv8khX8wYcaAdLmmgIR0C9+Zn9WIXTdX2UKGgGR0BycsgB91EFaAdLqGgIR0C9+bBHbypadX2UKGgGR0By6J6hQFcIaAdLsmgIR0C9+c9TLns+dX2UKGgGR0BySmxJNCZ4aAdLm2gIR0C9+dLSNOuadX2UKGgGR0BztVZq20AtaAdL7mgIR0C9+deV5a/zdX2UKGgGR0Bw47UZvUBoaAdLm2gIR0C9+d1gH/tIdX2UKGgGR0BwlYI5YHPeaAdLlWgIR0C9/lo0Q9RrdX2UKGgGR0Bz0syDZlFuaAdLxmgIR0C9/mO9nK4hdX2UKGgGR0BzZL1ct5D7aAdLyWgIR0C9/nt3np0PdX2UKGgGR0ByMeeXiR4haAdLrGgIR0C9/ozfBN21dX2UKGgGR0BzpOki2UjcaAdL0GgIR0C9/pGl2vB8dX2UKGgGR0BzUiml67d0aAdLxmgIR0C9/pLiIciodX2UKGgGR0BxDRTHbRF7aAdLpGgIR0C9/pvYFqzrdX2UKGgGR0BxGMfkmx+saAdLsGgIR0C9/qRnOB1+dX2UKGgGR0BvXl0cOskqaAdLomgIR0C9/ttpyp71dX2UKGgGR0BxxYGX5WRzaAdLsWgIR0C9/tuyNXHSdX2UKGgGR0BxG/aPCEYgaAdLq2gIR0C9/ugk9lmOdX2UKGgGR0Bxlt3LV4HHaAdLrGgIR0C9/yA2MsH0dX2UKGgGR0Bz629eyAx0aAdL1WgIR0C9/zjWCmMwdX2UKGgGR0BxsggyM1jzaAdLv2gIR0C9/z64tpVTdX2UKGgGR0BxrQovzvqkaAdLrGgIR0C9/0a9XcQAdX2UKGgGR0Bw1LOlfqoqaAdLtmgIR0C9/0oeDFqBdX2UKGgGR0B0NYauOjqOaAdLzGgIR0C9/10JKJ2udX2UKGgGR0BzROJYT0xuaAdLt2gIR0C9/4S7PIGRdX2UKGgGR0Byv4pc5bQkaAdLyGgIR0C9/4ljmSyMdX2UKGgGR0BzB2VLSNOuaAdLt2gIR0C9/5cHjZL7dX2UKGgGR0Bz6/BSDRMOaAdLxmgIR0C9/6BsVLzxdX2UKGgGR0B0O4JXyRSxaAdLx2gIR0C9/6MzQ/ordX2UKGgGR0BzlojOcDr7aAdLumgIR0C9/6XgxagVdX2UKGgGR0BwC9FVktmMaAdLomgIR0C9/79C/oJRdX2UKGgGR0Bx8Iv+OwPiaAdLsWgIR0C9/9Qiu+yrdX2UKGgGR0BxnWBJ7LMcaAdLoWgIR0C+AAqQNkOJdX2UKGgGR0B0SawHJLdvaAdL1mgIR0C+AB0gjhUBdX2UKGgGR0BxZpIy0rsjaAdLrGgIR0C+AEfStvGZdX2UKGgGR0BzRzeUILPVaAdLvGgIR0C+AE9LlFMJdX2UKGgGR0BzTTvDxb0OaAdLuGgIR0C+AFfIbOu8dX2UKGgGR0BxugToMa0haAdLgmgIR0C+AFu45Lh8dX2UKGgGR0Bzf5gmZ3LWaAdLxWgIR0C+AGPoaDPGdX2UKGgGR0ByvvvLHMlkaAdLymgIR0C+AIoao/A1dX2UKGgGR0Byxnk1dgOSaAdLoGgIR0C+AJPmPo3adX2UKGgGR0BzTrRWtEG8aAdLs2gIR0C+AJan752ydX2UKGgGR0Bz3GWAwwj/aAdLvGgIR0C+AJ9Brvb5dX2UKGgGR0BwZFWvKU3XaAdLlWgIR0C+ALeHN5dGdX2UKGgGR0By5xaV2Rq5aAdLumgIR0C+ALzltCRfdX2UKGgGR0B0A+moBJZoaAdLxmgIR0C+AMhPTG5udX2UKGgGR0BzoYcR15jZaAdLzWgIR0C+AO8cU/OddX2UKGgGR0ByU9sWO6uoaAdLtGgIR0C+ARNKdxyXdX2UKGgGR0BwVuwdKdxyaAdLsmgIR0C+ASDriVB2dX2UKGgGR0BxWkdMj/uLaAdLp2gIR0C+AUjTBqKxdX2UKGgGR0BzJz5vcafjaAdLsWgIR0C+AU/rGBFvdX2UKGgGR0BxFbJQtSQ6aAdLrmgIR0C+AVZU5uIidX2UKGgGR0B0OwCdSVGDaAdLz2gIR0C+AXNsBQvYdX2UKGgGR0Bw9FLGrCFcaAdLsWgIR0C+AYbLpzLfdX2UKGgGR0BztCjDbah6aAdL0mgIR0C+AZBysCDFdX2UKGgGR0BxxYVFhG6PaAdLs2gIR0C+AZT6BRQ8dX2UKGgGR0Bwqd3np0OmaAdLsGgIR0C+AZkLtu1ndX2UKGgGR0BxbGsvIwM6aAdLo2gIR0C+AZ3LidaudX2UKGgGR0ByFGKCQLeAaAdLqWgIR0C+AaqdH2AYdX2UKGgGR0BzOb0f5k9VaAdLzWgIR0C+AbSqU/wBdX2UKGgGR0ByIk55qubJaAdLy2gIR0C+AePjKgZkdX2UKGgGR0Bxq45ggHNYaAdLvWgIR0C+AfnnhbW3dX2UKGgGR0BxjzYUWVNYaAdLtWgIR0C+AhLSqlxfdX2UKGgGR0Bwg7s3Q2MsaAdLr2gIR0C+Ahh9Cu2adX2UKGgGR0BzqutbLU1AaAdLtWgIR0C+Akic5Ke1dX2UKGgGR0Bw3ZxBE8aGaAdLsmgIR0C+AktNWU8ndX2UKGgGR0BxybfIjnmraAdLmmgIR0C+AnR6F/QTdX2UKGgGR0BxCJ0PpY9xaAdLrGgIR0C+AnwaBI4EdX2UKGgGR0BxA087p3X7aAdLu2gIR0C+An5ItlI3dX2UKGgGR0Bz3vr8iwB6aAdL0WgIR0C+AoBFEy+IdX2UKGgGR0BxOflYEGJOaAdLnWgIR0C+An+qFRHgdX2UKGgGR0ByeM+gUUO/aAdLuGgIR0C+ApZo0ygxdX2UKGgGR0Bw8IO6NEPUaAdLrWgIR0C+AqzMA3kxdX2UKGgGR0ByItT72tdSaAdLxmgIR0C+Aq3ai9IxdX2UKGgGR0BRPxOHnEEUaAdLY2gIR0C+AuxJd0JXdX2UKGgGR0BzCId+5OJtaAdL3WgIR0C+Av/L1VYIdX2UKGgGR0Bybe3ocJdCaAdLtWgIR0C+AwT101ZUdX2UKGgGR0BzeO0IC2c8aAdLoGgIR0C+AxpNwiqydX2UKGgGR0ByWEE4ecQRaAdLtmgIR0C+AyRo7FKkdX2UKGgGR0Bxk8MOPNmlaAdLmGgIR0C+A1BkAggYdX2UKGgGR0ByMOmgrYoRaAdLxWgIR0C+A2a90zTGdX2UKGgGR0ByUWgwoLG8aAdLnmgIR0C+A6AG4ZuRdX2UKGgGR0Bw6r8ZUDMeaAdLnGgIR0C+A6EOiFj/dX2UKGgGR0Bx05gNPP9laAdLoGgIR0C+A6en2qT9dX2UKGgGR0BypKP+4smOaAdLpmgIR0C+A7WOZLIxdX2UKGgGR0BwR+W7e2uxaAdLsGgIR0C+A7pyIYWMdX2UKGgGR0Bw7dYQrc0taAdLrWgIR0C+A+G+TNdJdX2UKGgGR0By624QSSNgaAdLr2gIR0C+BAgZ88cNdX2UKGgGR0BxJ9At4A0baAdLnWgIR0C+BDPRE4NrdX2UKGgGR0BzYk0xdpqRaAdLx2gIR0C+BDPnfVI7dX2UKGgGR0Bm5ABeXzDoaAdN6ANoCEdAvgQ/xiG34XV9lChoBkdAco4i1RceKmgHS7RoCEdAvgRJNQCSzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6d50beaa8a0fe1749c5269b996ff3a48b01b4544fb5d8ca848f590da3549725
|
| 3 |
+
size 147930
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b35f86a9750>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b35f86a97e0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b35f86a9870>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b35f86a9900>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b35f86a9990>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b35f86a9a20>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b35f86a9ab0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b35f86a9b40>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b35f86a9bd0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b35f86a9c60>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b35f86a9cf0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b35f86a9d80>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b35f864a180>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 10010624,
|
| 25 |
+
"_total_timesteps": 10000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1701460663781396140,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPDsbo8wVM+ltLsvaErIL+zsds8mmrevAAAAAAAAAAAYNk/PiBfjD+nR7s+JzEwvwqEoj7AZl4+AAAAAAAAAAAzxZm8np5bP4B9Bb30Yni/uqyLvfIr7DwAAAAAAAAAADPOMj1In5O6lQAqM4GV8q5OhHE6Rk3NswAAgD8AAIA/zczIu1zbS7oACD8zb+wBsHBZVjpAL8OzAACAPwAAgD8zTzK87JWTu77Reb2Oa3y+zTkXvVO1lz4AAIA/AAAAALNoUz1OpYm8HV9BPuQqez26eZo8wXSXOwAAgD8AAIA/pkWkPRsN1j0hsYq+E5PLvuF++Twq9vK9AAAAAAAAAACGDxE+Lc+FP6As1D7+pDS/7GyNPmrBmT4AAAAAAAAAADPFS7yPwgW4g6IwMwS4ySu+m8E7uC/UswAAgD8AAIA/ZqyGvJYKrj/2ozi9V6zyvjaWRb3gn2e9AAAAAAAAAABmKVU9fkybPcMmcL6aTba+sm4xPP8/vb0AAAAAAAAAALpcJb77mDM/mKGlvOuuNL8SDdW+bst2PQAAAAAAAAAARk4nPhZUij7st7O+6tz7vtuk6D3fwhi+AAAAAAAAAAAAqIo716NNt+qyLry6W6g4GjOtujOgH7gAAIA/AACAP2Yl5T2E5Uc+QZ2yvkcW5b7xCBU9nacivgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIpaGxlg+iMAWyUS6GMAXSUR0C9+RKdMCcPdX2UKGgGR0ByxNcRlHz6aAdLv2gIR0C9+RL2USqVdX2UKGgGR0ByWPcIqsltaAdLnmgIR0C9+R+xOclPdX2UKGgGR0Bx23pqynk1aAdLsGgIR0C9+SOJpFkQdX2UKGgGR0BxsxPHktEoaAdLl2gIR0C9+TmOU+s6dX2UKGgGR0Bz/QfV7Qb/aAdLvmgIR0C9+U2ETQE7dX2UKGgGR0Byfam4y44IaAdLpmgIR0C9+VOcH4XXdX2UKGgGR0ByXNnwob4raAdLiGgIR0C9+YM4cWCVdX2UKGgGR0Bzx0byYoiLaAdL1WgIR0C9+ZprHlwMdX2UKGgGR0Bv8khX8wYcaAdLmmgIR0C9+Zn9WIXTdX2UKGgGR0BycsgB91EFaAdLqGgIR0C9+bBHbypadX2UKGgGR0By6J6hQFcIaAdLsmgIR0C9+c9TLns+dX2UKGgGR0BySmxJNCZ4aAdLm2gIR0C9+dLSNOuadX2UKGgGR0BztVZq20AtaAdL7mgIR0C9+deV5a/zdX2UKGgGR0Bw47UZvUBoaAdLm2gIR0C9+d1gH/tIdX2UKGgGR0BwlYI5YHPeaAdLlWgIR0C9/lo0Q9RrdX2UKGgGR0Bz0syDZlFuaAdLxmgIR0C9/mO9nK4hdX2UKGgGR0BzZL1ct5D7aAdLyWgIR0C9/nt3np0PdX2UKGgGR0ByMeeXiR4haAdLrGgIR0C9/ozfBN21dX2UKGgGR0BzpOki2UjcaAdL0GgIR0C9/pGl2vB8dX2UKGgGR0BzUiml67d0aAdLxmgIR0C9/pLiIciodX2UKGgGR0BxDRTHbRF7aAdLpGgIR0C9/pvYFqzrdX2UKGgGR0BxGMfkmx+saAdLsGgIR0C9/qRnOB1+dX2UKGgGR0BvXl0cOskqaAdLomgIR0C9/ttpyp71dX2UKGgGR0BxxYGX5WRzaAdLsWgIR0C9/tuyNXHSdX2UKGgGR0BxG/aPCEYgaAdLq2gIR0C9/ugk9lmOdX2UKGgGR0Bxlt3LV4HHaAdLrGgIR0C9/yA2MsH0dX2UKGgGR0Bz629eyAx0aAdL1WgIR0C9/zjWCmMwdX2UKGgGR0BxsggyM1jzaAdLv2gIR0C9/z64tpVTdX2UKGgGR0BxrQovzvqkaAdLrGgIR0C9/0a9XcQAdX2UKGgGR0Bw1LOlfqoqaAdLtmgIR0C9/0oeDFqBdX2UKGgGR0B0NYauOjqOaAdLzGgIR0C9/10JKJ2udX2UKGgGR0BzROJYT0xuaAdLt2gIR0C9/4S7PIGRdX2UKGgGR0Byv4pc5bQkaAdLyGgIR0C9/4ljmSyMdX2UKGgGR0BzB2VLSNOuaAdLt2gIR0C9/5cHjZL7dX2UKGgGR0Bz6/BSDRMOaAdLxmgIR0C9/6BsVLzxdX2UKGgGR0B0O4JXyRSxaAdLx2gIR0C9/6MzQ/ordX2UKGgGR0BzlojOcDr7aAdLumgIR0C9/6XgxagVdX2UKGgGR0BwC9FVktmMaAdLomgIR0C9/79C/oJRdX2UKGgGR0Bx8Iv+OwPiaAdLsWgIR0C9/9Qiu+yrdX2UKGgGR0BxnWBJ7LMcaAdLoWgIR0C+AAqQNkOJdX2UKGgGR0B0SawHJLdvaAdL1mgIR0C+AB0gjhUBdX2UKGgGR0BxZpIy0rsjaAdLrGgIR0C+AEfStvGZdX2UKGgGR0BzRzeUILPVaAdLvGgIR0C+AE9LlFMJdX2UKGgGR0BzTTvDxb0OaAdLuGgIR0C+AFfIbOu8dX2UKGgGR0BxugToMa0haAdLgmgIR0C+AFu45Lh8dX2UKGgGR0Bzf5gmZ3LWaAdLxWgIR0C+AGPoaDPGdX2UKGgGR0ByvvvLHMlkaAdLymgIR0C+AIoao/A1dX2UKGgGR0Byxnk1dgOSaAdLoGgIR0C+AJPmPo3adX2UKGgGR0BzTrRWtEG8aAdLs2gIR0C+AJan752ydX2UKGgGR0Bz3GWAwwj/aAdLvGgIR0C+AJ9Brvb5dX2UKGgGR0BwZFWvKU3XaAdLlWgIR0C+ALeHN5dGdX2UKGgGR0By5xaV2Rq5aAdLumgIR0C+ALzltCRfdX2UKGgGR0B0A+moBJZoaAdLxmgIR0C+AMhPTG5udX2UKGgGR0BzoYcR15jZaAdLzWgIR0C+AO8cU/OddX2UKGgGR0ByU9sWO6uoaAdLtGgIR0C+ARNKdxyXdX2UKGgGR0BwVuwdKdxyaAdLsmgIR0C+ASDriVB2dX2UKGgGR0BxWkdMj/uLaAdLp2gIR0C+AUjTBqKxdX2UKGgGR0BzJz5vcafjaAdLsWgIR0C+AU/rGBFvdX2UKGgGR0BxFbJQtSQ6aAdLrmgIR0C+AVZU5uIidX2UKGgGR0B0OwCdSVGDaAdLz2gIR0C+AXNsBQvYdX2UKGgGR0Bw9FLGrCFcaAdLsWgIR0C+AYbLpzLfdX2UKGgGR0BztCjDbah6aAdL0mgIR0C+AZBysCDFdX2UKGgGR0BxxYVFhG6PaAdLs2gIR0C+AZT6BRQ8dX2UKGgGR0Bwqd3np0OmaAdLsGgIR0C+AZkLtu1ndX2UKGgGR0BxbGsvIwM6aAdLo2gIR0C+AZ3LidaudX2UKGgGR0ByFGKCQLeAaAdLqWgIR0C+AaqdH2AYdX2UKGgGR0BzOb0f5k9VaAdLzWgIR0C+AbSqU/wBdX2UKGgGR0ByIk55qubJaAdLy2gIR0C+AePjKgZkdX2UKGgGR0Bxq45ggHNYaAdLvWgIR0C+AfnnhbW3dX2UKGgGR0BxjzYUWVNYaAdLtWgIR0C+AhLSqlxfdX2UKGgGR0Bwg7s3Q2MsaAdLr2gIR0C+Ahh9Cu2adX2UKGgGR0BzqutbLU1AaAdLtWgIR0C+Akic5Ke1dX2UKGgGR0Bw3ZxBE8aGaAdLsmgIR0C+AktNWU8ndX2UKGgGR0BxybfIjnmraAdLmmgIR0C+AnR6F/QTdX2UKGgGR0BxCJ0PpY9xaAdLrGgIR0C+AnwaBI4EdX2UKGgGR0BxA087p3X7aAdLu2gIR0C+An5ItlI3dX2UKGgGR0Bz3vr8iwB6aAdL0WgIR0C+AoBFEy+IdX2UKGgGR0BxOflYEGJOaAdLnWgIR0C+An+qFRHgdX2UKGgGR0ByeM+gUUO/aAdLuGgIR0C+ApZo0ygxdX2UKGgGR0Bw8IO6NEPUaAdLrWgIR0C+AqzMA3kxdX2UKGgGR0ByItT72tdSaAdLxmgIR0C+Aq3ai9IxdX2UKGgGR0BRPxOHnEEUaAdLY2gIR0C+AuxJd0JXdX2UKGgGR0BzCId+5OJtaAdL3WgIR0C+Av/L1VYIdX2UKGgGR0Bybe3ocJdCaAdLtWgIR0C+AwT101ZUdX2UKGgGR0BzeO0IC2c8aAdLoGgIR0C+AxpNwiqydX2UKGgGR0ByWEE4ecQRaAdLtmgIR0C+AyRo7FKkdX2UKGgGR0Bxk8MOPNmlaAdLmGgIR0C+A1BkAggYdX2UKGgGR0ByMOmgrYoRaAdLxWgIR0C+A2a90zTGdX2UKGgGR0ByUWgwoLG8aAdLnmgIR0C+A6AG4ZuRdX2UKGgGR0Bw6r8ZUDMeaAdLnGgIR0C+A6EOiFj/dX2UKGgGR0Bx05gNPP9laAdLoGgIR0C+A6en2qT9dX2UKGgGR0BypKP+4smOaAdLpmgIR0C+A7WOZLIxdX2UKGgGR0BwR+W7e2uxaAdLsGgIR0C+A7pyIYWMdX2UKGgGR0Bw7dYQrc0taAdLrWgIR0C+A+G+TNdJdX2UKGgGR0By624QSSNgaAdLr2gIR0C+BAgZ88cNdX2UKGgGR0BxJ9At4A0baAdLnWgIR0C+BDPRE4NrdX2UKGgGR0BzYk0xdpqRaAdLx2gIR0C+BDPnfVI7dX2UKGgGR0Bm5ABeXzDoaAdN6ANoCEdAvgQ/xiG34XV9lChoBkdAco4i1RceKmgHS7RoCEdAvgRJNQCSzXVlLg=="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 2444,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1709347693b216b86b1363294628d87a07776aad59d6e1bf18994913a185358b
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ebae3709df87479ca4384006c0fd6f5a25287b5b6eee19e865fce4dbcfe47a9
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
| 2 |
+
- Python: 3.10.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.1.0+cu118
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.23.5
|
| 7 |
+
- Cloudpickle: 2.2.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
|
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 302.1604491859999, "std_reward": 17.888480966205062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-01T22:06:38.012541"}
|