commit from fengtc
Browse files- MODEL_LICENSE +65 -0
- README.md +97 -0
- config.json +41 -0
- configuration_chatglm.py +59 -0
- modeling_chatglm.py +1193 -0
- pytorch_model-00001-of-00007.bin +3 -0
- pytorch_model-00002-of-00007.bin +3 -0
- pytorch_model-00003-of-00007.bin +3 -0
- pytorch_model-00004-of-00007.bin +3 -0
- pytorch_model-00005-of-00007.bin +3 -0
- pytorch_model-00006-of-00007.bin +3 -0
- pytorch_model-00007-of-00007.bin +3 -0
- pytorch_model.bin.index.json +207 -0
- quantization.py +188 -0
- tokenization_chatglm.py +257 -0
- tokenizer.model +3 -0
- tokenizer_config.json +12 -0
    	
        MODEL_LICENSE
    ADDED
    
    | @@ -0,0 +1,65 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            The ChatGLM2-6B License
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            1. 定义
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            “许可方”是指分发其软件的 ChatGLM2-6B 模型团队。
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            “软件”是指根据本许可提供的 ChatGLM2-6B 模型参数。
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            2. 许可授予
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            3.限制
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            4.免责声明
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            5. 责任限制
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            6.争议解决
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            1. Definitions
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            “Licensor” means the ChatGLM2-6B Model Team that distributes its Software.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            “Software” means the ChatGLM2-6B model parameters made available under this license.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            2. License Grant
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software.
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            3. Restriction
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            4. Disclaimer
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            5. Limitation of Liability
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            6. Dispute Resolution
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            Note that the license is subject to update to a more comprehensive version.  For any questions related to the license and copyright, please contact us at [email protected].
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,97 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language:
         | 
| 3 | 
            +
            - zh
         | 
| 4 | 
            +
            - en
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - glm
         | 
| 7 | 
            +
            - chatglm
         | 
| 8 | 
            +
            - thudm
         | 
| 9 | 
            +
            ---
         | 
| 10 | 
            +
            # ChatGLM2-6B
         | 
| 11 | 
            +
            <p align="center">
         | 
| 12 | 
            +
              💻 <a href="https://github.com/THUDM/ChatGLM2-6B" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br>
         | 
| 13 | 
            +
            </p>
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <p align="center">
         | 
| 16 | 
            +
                👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-1y7pqoloy-9b1g6T6JjA8J0KxvUjbwJw" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM-6B/blob/main/resources/WECHAT.md" target="_blank">WeChat</a>
         | 
| 17 | 
            +
            </p>
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            ## 介绍
         | 
| 20 | 
            +
            ChatGLM**2**-6B 是开源中英双语对话模型 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM**2**-6B 引入了如下新特性:
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            1. **更强大的性能**:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM](https://github.com/THUDM/GLM) 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,[评测结果](#评测结果)显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
         | 
| 23 | 
            +
            2. **更长的上下文**:基于 [FlashAttention](https://github.com/HazyResearch/flash-attention) 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
         | 
| 24 | 
            +
            3. **更高效的推理**:基于 [Multi-Query Attention](http://arxiv.org/abs/1911.02150) 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
         | 
| 25 | 
            +
            4. **更开放的协议**:ChatGLM2-6B 权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ChatGLM**2**-6B is the second-generation version of the open-source bilingual (Chinese-English) chat model [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B). It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features:
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size.
         | 
| 30 | 
            +
            2. **Longer Context**: Based on [FlashAttention](https://github.com/HazyResearch/flash-attention) technique, we have extended the context length of the base model from 2K in ChatGLM-6B to 32K, and trained with a context length of 8K during the dialogue alignment, allowing for more rounds of dialogue. However, the current version of ChatGLM2-6B has limited understanding of single-round ultra-long documents, which we will focus on optimizing in future iterations.
         | 
| 31 | 
            +
            3. **More Efficient Inference**: Based on [Multi-Query Attention](http://arxiv.org/abs/1911.02150) technique, ChatGLM2-6B has more efficient inference speed and lower GPU memory usage: under the official  implementation, the inference speed has increased by 42% compared to the first generation; under INT4 quantization, the dialogue length supported by 6G GPU memory has increased from 1K to 8K.
         | 
| 32 | 
            +
            4. **More Open License**: ChatGLM2-6B weights are **completely open** for academic research, and **free commercial use** is also allowed after completing the [questionnaire](https://open.bigmodel.cn/mla/form).
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ## 软件依赖
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ```shell
         | 
| 37 | 
            +
            pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
         | 
| 38 | 
            +
            ```
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ## 代码调用 
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            ```ipython
         | 
| 45 | 
            +
            >>> from transformers import AutoTokenizer, AutoModel
         | 
| 46 | 
            +
            >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
         | 
| 47 | 
            +
            >>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
         | 
| 48 | 
            +
            >>> model = model.eval()
         | 
| 49 | 
            +
            >>> response, history = model.chat(tokenizer, "你好", history=[])
         | 
| 50 | 
            +
            >>> print(response)
         | 
| 51 | 
            +
            你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
         | 
| 52 | 
            +
            >>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
         | 
| 53 | 
            +
            >>> print(response)
         | 
| 54 | 
            +
            晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
         | 
| 57 | 
            +
            2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
         | 
| 58 | 
            +
            3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
         | 
| 59 | 
            +
            4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
         | 
| 60 | 
            +
            5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
         | 
| 61 | 
            +
            6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。
         | 
| 64 | 
            +
            ```
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM2-6B)。
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM2-6B).
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## Change Log
         | 
| 71 | 
            +
            * v1.0
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ## 协议
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM2-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            ## 引用
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            如果你觉得我们的工作有帮助的话,请考虑引用下列论文,ChatGLM2-6B 的论文会在近期公布,敬请期待~
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            ```
         | 
| 82 | 
            +
            @article{zeng2022glm,
         | 
| 83 | 
            +
              title={Glm-130b: An open bilingual pre-trained model},
         | 
| 84 | 
            +
              author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
         | 
| 85 | 
            +
              journal={arXiv preprint arXiv:2210.02414},
         | 
| 86 | 
            +
              year={2022}
         | 
| 87 | 
            +
            }
         | 
| 88 | 
            +
            ```
         | 
| 89 | 
            +
            ```
         | 
| 90 | 
            +
            @inproceedings{du2022glm,
         | 
| 91 | 
            +
              title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
         | 
| 92 | 
            +
              author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
         | 
| 93 | 
            +
              booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
         | 
| 94 | 
            +
              pages={320--335},
         | 
| 95 | 
            +
              year={2022}
         | 
| 96 | 
            +
            }
         | 
| 97 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "THUDM/chatglm2-6b",
         | 
| 3 | 
            +
              "model_type": "chatglm",
         | 
| 4 | 
            +
              "architectures": [
         | 
| 5 | 
            +
                "ChatGLMModel"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_chatglm.ChatGLMConfig",
         | 
| 9 | 
            +
                "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
         | 
| 10 | 
            +
                "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
         | 
| 11 | 
            +
                "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
         | 
| 12 | 
            +
              },
         | 
| 13 | 
            +
              "add_bias_linear": false,
         | 
| 14 | 
            +
              "add_qkv_bias": true,
         | 
| 15 | 
            +
              "apply_query_key_layer_scaling": true,
         | 
| 16 | 
            +
              "apply_residual_connection_post_layernorm": false,
         | 
| 17 | 
            +
              "attention_dropout": 0.0,
         | 
| 18 | 
            +
              "attention_softmax_in_fp32": true,
         | 
| 19 | 
            +
              "bias_dropout_fusion": true,
         | 
| 20 | 
            +
              "ffn_hidden_size": 13696,
         | 
| 21 | 
            +
              "fp32_residual_connection": false,
         | 
| 22 | 
            +
              "hidden_dropout": 0.0,
         | 
| 23 | 
            +
              "hidden_size": 4096,
         | 
| 24 | 
            +
              "kv_channels": 128,
         | 
| 25 | 
            +
              "layernorm_epsilon": 1e-05,
         | 
| 26 | 
            +
              "multi_query_attention": true,
         | 
| 27 | 
            +
              "multi_query_group_num": 2,
         | 
| 28 | 
            +
              "num_attention_heads": 32,
         | 
| 29 | 
            +
              "num_layers": 28,
         | 
| 30 | 
            +
              "original_rope": true,
         | 
| 31 | 
            +
              "padded_vocab_size": 65024,
         | 
| 32 | 
            +
              "post_layer_norm": true,
         | 
| 33 | 
            +
              "rmsnorm": true,
         | 
| 34 | 
            +
              "seq_length": 32768,
         | 
| 35 | 
            +
              "use_cache": true,
         | 
| 36 | 
            +
              "torch_dtype": "float16",
         | 
| 37 | 
            +
              "transformers_version": "4.27.1",
         | 
| 38 | 
            +
              "tie_word_embeddings": false,
         | 
| 39 | 
            +
              "eos_token_id": 2,
         | 
| 40 | 
            +
              "pad_token_id": 0
         | 
| 41 | 
            +
            }
         | 
    	
        configuration_chatglm.py
    ADDED
    
    | @@ -0,0 +1,59 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers import PretrainedConfig
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            class ChatGLMConfig(PretrainedConfig):
         | 
| 5 | 
            +
                model_type = "chatglm"
         | 
| 6 | 
            +
                def __init__(
         | 
| 7 | 
            +
                    self,
         | 
| 8 | 
            +
                    num_layers=28,
         | 
| 9 | 
            +
                    padded_vocab_size=65024,
         | 
| 10 | 
            +
                    hidden_size=4096,
         | 
| 11 | 
            +
                    ffn_hidden_size=13696,
         | 
| 12 | 
            +
                    kv_channels=128,
         | 
| 13 | 
            +
                    num_attention_heads=32,
         | 
| 14 | 
            +
                    seq_length=2048,
         | 
| 15 | 
            +
                    hidden_dropout=0.0,
         | 
| 16 | 
            +
                    attention_dropout=0.0,
         | 
| 17 | 
            +
                    layernorm_epsilon=1e-5,
         | 
| 18 | 
            +
                    rmsnorm=True,
         | 
| 19 | 
            +
                    apply_residual_connection_post_layernorm=False,
         | 
| 20 | 
            +
                    post_layer_norm=True,
         | 
| 21 | 
            +
                    add_bias_linear=False,
         | 
| 22 | 
            +
                    add_qkv_bias=False,
         | 
| 23 | 
            +
                    bias_dropout_fusion=True,
         | 
| 24 | 
            +
                    multi_query_attention=False,
         | 
| 25 | 
            +
                    multi_query_group_num=1,
         | 
| 26 | 
            +
                    apply_query_key_layer_scaling=True,
         | 
| 27 | 
            +
                    attention_softmax_in_fp32=True,
         | 
| 28 | 
            +
                    fp32_residual_connection=False,
         | 
| 29 | 
            +
                    quantization_bit=0,
         | 
| 30 | 
            +
                    pre_seq_len=None,
         | 
| 31 | 
            +
                    prefix_projection=False,
         | 
| 32 | 
            +
                    **kwargs
         | 
| 33 | 
            +
                ):
         | 
| 34 | 
            +
                    self.num_layers = num_layers
         | 
| 35 | 
            +
                    self.vocab_size = padded_vocab_size
         | 
| 36 | 
            +
                    self.padded_vocab_size = padded_vocab_size
         | 
| 37 | 
            +
                    self.hidden_size = hidden_size
         | 
| 38 | 
            +
                    self.ffn_hidden_size = ffn_hidden_size
         | 
| 39 | 
            +
                    self.kv_channels = kv_channels
         | 
| 40 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 41 | 
            +
                    self.seq_length = seq_length
         | 
| 42 | 
            +
                    self.hidden_dropout = hidden_dropout
         | 
| 43 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 44 | 
            +
                    self.layernorm_epsilon = layernorm_epsilon
         | 
| 45 | 
            +
                    self.rmsnorm = rmsnorm
         | 
| 46 | 
            +
                    self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
         | 
| 47 | 
            +
                    self.post_layer_norm = post_layer_norm
         | 
| 48 | 
            +
                    self.add_bias_linear = add_bias_linear
         | 
| 49 | 
            +
                    self.add_qkv_bias = add_qkv_bias
         | 
| 50 | 
            +
                    self.bias_dropout_fusion = bias_dropout_fusion
         | 
| 51 | 
            +
                    self.multi_query_attention = multi_query_attention
         | 
| 52 | 
            +
                    self.multi_query_group_num = multi_query_group_num
         | 
| 53 | 
            +
                    self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
         | 
| 54 | 
            +
                    self.attention_softmax_in_fp32 = attention_softmax_in_fp32
         | 
| 55 | 
            +
                    self.fp32_residual_connection = fp32_residual_connection
         | 
| 56 | 
            +
                    self.quantization_bit = quantization_bit
         | 
| 57 | 
            +
                    self.pre_seq_len = pre_seq_len
         | 
| 58 | 
            +
                    self.prefix_projection = prefix_projection
         | 
| 59 | 
            +
                    super().__init__(**kwargs)
         | 
    	
        modeling_chatglm.py
    ADDED
    
    | @@ -0,0 +1,1193 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """ PyTorch ChatGLM model. """
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            import copy
         | 
| 5 | 
            +
            import warnings
         | 
| 6 | 
            +
            import re
         | 
| 7 | 
            +
            import sys
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torch.utils.checkpoint
         | 
| 11 | 
            +
            import torch.nn.functional as F
         | 
| 12 | 
            +
            from torch import nn
         | 
| 13 | 
            +
            from torch.nn import CrossEntropyLoss, LayerNorm
         | 
| 14 | 
            +
            from torch.nn.utils import skip_init
         | 
| 15 | 
            +
            from typing import Optional, Tuple, Union, List, Callable, Dict, Any
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from transformers.modeling_outputs import (
         | 
| 18 | 
            +
                BaseModelOutputWithPast,
         | 
| 19 | 
            +
                CausalLMOutputWithPast,
         | 
| 20 | 
            +
            )
         | 
| 21 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 22 | 
            +
            from transformers.utils import logging
         | 
| 23 | 
            +
            from transformers.generation.logits_process import LogitsProcessor
         | 
| 24 | 
            +
            from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from .configuration_chatglm import ChatGLMConfig
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # flags required to enable jit fusion kernels
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            if sys.platform != 'darwin':
         | 
| 31 | 
            +
                torch._C._jit_set_profiling_mode(False)
         | 
| 32 | 
            +
                torch._C._jit_set_profiling_executor(False)
         | 
| 33 | 
            +
                torch._C._jit_override_can_fuse_on_cpu(True)
         | 
| 34 | 
            +
                torch._C._jit_override_can_fuse_on_gpu(True)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
         | 
| 39 | 
            +
            _CONFIG_FOR_DOC = "ChatGLM6BConfig"
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
         | 
| 42 | 
            +
                "THUDM/chatglm2-6b",
         | 
| 43 | 
            +
                # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
         | 
| 44 | 
            +
            ]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            def default_init(cls, *args, **kwargs):
         | 
| 48 | 
            +
                return cls(*args, **kwargs)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class InvalidScoreLogitsProcessor(LogitsProcessor):
         | 
| 52 | 
            +
                def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
         | 
| 53 | 
            +
                    if torch.isnan(scores).any() or torch.isinf(scores).any():
         | 
| 54 | 
            +
                        scores.zero_()
         | 
| 55 | 
            +
                        scores[..., 5] = 5e4
         | 
| 56 | 
            +
                    return scores
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class PrefixEncoder(torch.nn.Module):
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                The torch.nn model to encode the prefix
         | 
| 62 | 
            +
                Input shape: (batch-size, prefix-length)
         | 
| 63 | 
            +
                Output shape: (batch-size, prefix-length, 2*layers*hidden)
         | 
| 64 | 
            +
                """
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def __init__(self, config: ChatGLMConfig):
         | 
| 67 | 
            +
                    super().__init__()
         | 
| 68 | 
            +
                    self.prefix_projection = config.prefix_projection
         | 
| 69 | 
            +
                    if self.prefix_projection:
         | 
| 70 | 
            +
                        # Use a two-layer MLP to encode the prefix
         | 
| 71 | 
            +
                        kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
         | 
| 72 | 
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
         | 
| 73 | 
            +
                        self.trans = torch.nn.Sequential(
         | 
| 74 | 
            +
                            torch.nn.Linear(kv_size, config.hidden_size),
         | 
| 75 | 
            +
                            torch.nn.Tanh(),
         | 
| 76 | 
            +
                            torch.nn.Linear(config.hidden_size, kv_size)
         | 
| 77 | 
            +
                        )
         | 
| 78 | 
            +
                    else:
         | 
| 79 | 
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len,
         | 
| 80 | 
            +
                                                            config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def forward(self, prefix: torch.Tensor):
         | 
| 83 | 
            +
                    if self.prefix_projection:
         | 
| 84 | 
            +
                        prefix_tokens = self.embedding(prefix)
         | 
| 85 | 
            +
                        past_key_values = self.trans(prefix_tokens)
         | 
| 86 | 
            +
                    else:
         | 
| 87 | 
            +
                        past_key_values = self.embedding(prefix)
         | 
| 88 | 
            +
                    return past_key_values
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def split_tensor_along_last_dim(
         | 
| 92 | 
            +
                    tensor: torch.Tensor,
         | 
| 93 | 
            +
                    num_partitions: int,
         | 
| 94 | 
            +
                    contiguous_split_chunks: bool = False,
         | 
| 95 | 
            +
            ) -> List[torch.Tensor]:
         | 
| 96 | 
            +
                """Split a tensor along its last dimension.
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                Arguments:
         | 
| 99 | 
            +
                    tensor: input tensor.
         | 
| 100 | 
            +
                    num_partitions: number of partitions to split the tensor
         | 
| 101 | 
            +
                    contiguous_split_chunks: If True, make each chunk contiguous
         | 
| 102 | 
            +
                                             in memory.
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                Returns:
         | 
| 105 | 
            +
                    A list of Tensors
         | 
| 106 | 
            +
                """
         | 
| 107 | 
            +
                # Get the size and dimension.
         | 
| 108 | 
            +
                last_dim = tensor.dim() - 1
         | 
| 109 | 
            +
                last_dim_size = tensor.size()[last_dim] // num_partitions
         | 
| 110 | 
            +
                # Split.
         | 
| 111 | 
            +
                tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
         | 
| 112 | 
            +
                # Note: torch.split does not create contiguous tensors by default.
         | 
| 113 | 
            +
                if contiguous_split_chunks:
         | 
| 114 | 
            +
                    return tuple(chunk.contiguous() for chunk in tensor_list)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                return tensor_list
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            class RotaryEmbedding(nn.Module):
         | 
| 120 | 
            +
                def __init__(self, dim, original_impl=False, device=None, dtype=None):
         | 
| 121 | 
            +
                    super().__init__()
         | 
| 122 | 
            +
                    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
         | 
| 123 | 
            +
                    self.register_buffer("inv_freq", inv_freq)
         | 
| 124 | 
            +
                    self.dim = dim
         | 
| 125 | 
            +
                    self.original_impl = original_impl
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def forward_impl(
         | 
| 128 | 
            +
                        self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
         | 
| 129 | 
            +
                ):
         | 
| 130 | 
            +
                    """Enhanced Transformer with Rotary Position Embedding.
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
         | 
| 133 | 
            +
                    transformers/rope/__init__.py. MIT License:
         | 
| 134 | 
            +
                    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
         | 
| 135 | 
            +
                    """
         | 
| 136 | 
            +
                    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
         | 
| 137 | 
            +
                    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    # Create position indexes `[0, 1, ..., seq_len - 1]`
         | 
| 140 | 
            +
                    seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    # Calculate the product of position index and $\theta_i$
         | 
| 143 | 
            +
                    idx_theta = torch.outer(seq_idx, theta).float()
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    # this is to mimic the behaviour of complex32, else we will get different results
         | 
| 148 | 
            +
                    if dtype in (torch.float16, torch.bfloat16, torch.int8):
         | 
| 149 | 
            +
                        cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
         | 
| 150 | 
            +
                    return cache
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def forward(self, max_seq_len, offset=0):
         | 
| 153 | 
            +
                    return self.forward_impl(
         | 
| 154 | 
            +
                        max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
         | 
| 155 | 
            +
                    )
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            @torch.jit.script
         | 
| 159 | 
            +
            def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
         | 
| 160 | 
            +
                # x: [sq, b, np, hn]
         | 
| 161 | 
            +
                sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
         | 
| 162 | 
            +
                rot_dim = rope_cache.shape[-2] * 2
         | 
| 163 | 
            +
                x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
         | 
| 164 | 
            +
                # truncate to support variable sizes
         | 
| 165 | 
            +
                rope_cache = rope_cache[:sq]
         | 
| 166 | 
            +
                xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
         | 
| 167 | 
            +
                rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
         | 
| 168 | 
            +
                x_out2 = torch.stack(
         | 
| 169 | 
            +
                    [
         | 
| 170 | 
            +
                        xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
         | 
| 171 | 
            +
                        xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
         | 
| 172 | 
            +
                    ],
         | 
| 173 | 
            +
                    -1,
         | 
| 174 | 
            +
                )
         | 
| 175 | 
            +
                x_out2 = x_out2.flatten(3)
         | 
| 176 | 
            +
                return torch.cat((x_out2, x_pass), dim=-1)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
             | 
| 179 | 
            +
            class RMSNorm(torch.nn.Module):
         | 
| 180 | 
            +
                def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
         | 
| 181 | 
            +
                    super().__init__()
         | 
| 182 | 
            +
                    self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
         | 
| 183 | 
            +
                    self.eps = eps
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def forward(self, hidden_states: torch.Tensor):
         | 
| 186 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 187 | 
            +
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 188 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    return (self.weight * hidden_states).to(input_dtype)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            class CoreAttention(torch.nn.Module):
         | 
| 194 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number):
         | 
| 195 | 
            +
                    super(CoreAttention, self).__init__()
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
         | 
| 198 | 
            +
                    self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
         | 
| 199 | 
            +
                    if self.apply_query_key_layer_scaling:
         | 
| 200 | 
            +
                        self.attention_softmax_in_fp32 = True
         | 
| 201 | 
            +
                    self.layer_number = max(1, layer_number)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    projection_size = config.kv_channels * config.num_attention_heads
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    # Per attention head and per partition values.
         | 
| 206 | 
            +
                    self.hidden_size_per_partition = projection_size
         | 
| 207 | 
            +
                    self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
         | 
| 208 | 
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    coeff = None
         | 
| 211 | 
            +
                    self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
         | 
| 212 | 
            +
                    if self.apply_query_key_layer_scaling:
         | 
| 213 | 
            +
                        coeff = self.layer_number
         | 
| 214 | 
            +
                        self.norm_factor *= coeff
         | 
| 215 | 
            +
                    self.coeff = coeff
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                def forward(self, query_layer, key_layer, value_layer, attention_mask):
         | 
| 220 | 
            +
                    pytorch_major_version = int(torch.__version__.split('.')[0])
         | 
| 221 | 
            +
                    if pytorch_major_version >= 2:
         | 
| 222 | 
            +
                        query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
         | 
| 223 | 
            +
                        if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
         | 
| 224 | 
            +
                            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         | 
| 225 | 
            +
                                                                                             is_causal=True)
         | 
| 226 | 
            +
                        else:
         | 
| 227 | 
            +
                            if attention_mask is not None:
         | 
| 228 | 
            +
                                attention_mask = ~attention_mask
         | 
| 229 | 
            +
                            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         | 
| 230 | 
            +
                                                                                             attention_mask)
         | 
| 231 | 
            +
                        context_layer = context_layer.permute(2, 0, 1, 3)
         | 
| 232 | 
            +
                        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         | 
| 233 | 
            +
                        context_layer = context_layer.reshape(*new_context_layer_shape)
         | 
| 234 | 
            +
                    else:
         | 
| 235 | 
            +
                        # Raw attention scores
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                        # [b, np, sq, sk]
         | 
| 238 | 
            +
                        output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                        # [sq, b, np, hn] -> [sq, b * np, hn]
         | 
| 241 | 
            +
                        query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
         | 
| 242 | 
            +
                        # [sk, b, np, hn] -> [sk, b * np, hn]
         | 
| 243 | 
            +
                        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                        # preallocting input tensor: [b * np, sq, sk]
         | 
| 246 | 
            +
                        matmul_input_buffer = torch.empty(
         | 
| 247 | 
            +
                            output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
         | 
| 248 | 
            +
                            device=query_layer.device
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                        # Raw attention scores. [b * np, sq, sk]
         | 
| 252 | 
            +
                        matmul_result = torch.baddbmm(
         | 
| 253 | 
            +
                            matmul_input_buffer,
         | 
| 254 | 
            +
                            query_layer.transpose(0, 1),  # [b * np, sq, hn]
         | 
| 255 | 
            +
                            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
         | 
| 256 | 
            +
                            beta=0.0,
         | 
| 257 | 
            +
                            alpha=(1.0 / self.norm_factor),
         | 
| 258 | 
            +
                        )
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                        # change view to [b, np, sq, sk]
         | 
| 261 | 
            +
                        attention_scores = matmul_result.view(*output_size)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                        # ===========================
         | 
| 264 | 
            +
                        # Attention probs and dropout
         | 
| 265 | 
            +
                        # ===========================
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                        # attention scores and attention mask [b, np, sq, sk]
         | 
| 268 | 
            +
                        if self.attention_softmax_in_fp32:
         | 
| 269 | 
            +
                            attention_scores = attention_scores.float()
         | 
| 270 | 
            +
                        if self.coeff is not None:
         | 
| 271 | 
            +
                            attention_scores = attention_scores * self.coeff
         | 
| 272 | 
            +
                        if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
         | 
| 273 | 
            +
                            attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
         | 
| 274 | 
            +
                                                        device=attention_scores.device, dtype=torch.bool)
         | 
| 275 | 
            +
                            attention_mask.tril_()
         | 
| 276 | 
            +
                            attention_mask = ~attention_mask
         | 
| 277 | 
            +
                        if attention_mask is not None:
         | 
| 278 | 
            +
                            attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
         | 
| 279 | 
            +
                        attention_probs = F.softmax(attention_scores, dim=-1)
         | 
| 280 | 
            +
                        attention_probs = attention_probs.type_as(value_layer)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                        # This is actually dropping out entire tokens to attend to, which might
         | 
| 283 | 
            +
                        # seem a bit unusual, but is taken from the original Transformer paper.
         | 
| 284 | 
            +
                        attention_probs = self.attention_dropout(attention_probs)
         | 
| 285 | 
            +
                        # =========================
         | 
| 286 | 
            +
                        # Context layer. [sq, b, hp]
         | 
| 287 | 
            +
                        # =========================
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                        # value_layer -> context layer.
         | 
| 290 | 
            +
                        # [sk, b, np, hn] --> [b, np, sq, hn]
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                        # context layer shape: [b, np, sq, hn]
         | 
| 293 | 
            +
                        output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
         | 
| 294 | 
            +
                        # change view [sk, b * np, hn]
         | 
| 295 | 
            +
                        value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
         | 
| 296 | 
            +
                        # change view [b * np, sq, sk]
         | 
| 297 | 
            +
                        attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
         | 
| 298 | 
            +
                        # matmul: [b * np, sq, hn]
         | 
| 299 | 
            +
                        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
         | 
| 300 | 
            +
                        # change view [b, np, sq, hn]
         | 
| 301 | 
            +
                        context_layer = context_layer.view(*output_size)
         | 
| 302 | 
            +
                        # [b, np, sq, hn] --> [sq, b, np, hn]
         | 
| 303 | 
            +
                        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
         | 
| 304 | 
            +
                        # [sq, b, np, hn] --> [sq, b, hp]
         | 
| 305 | 
            +
                        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         | 
| 306 | 
            +
                        context_layer = context_layer.view(*new_context_layer_shape)
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    return context_layer
         | 
| 309 | 
            +
             | 
| 310 | 
            +
             | 
| 311 | 
            +
            class SelfAttention(torch.nn.Module):
         | 
| 312 | 
            +
                """Parallel self-attention layer abstract class.
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                Self-attention layer takes input with size [s, b, h]
         | 
| 315 | 
            +
                and returns output of the same size.
         | 
| 316 | 
            +
                """
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         | 
| 319 | 
            +
                    super(SelfAttention, self).__init__()
         | 
| 320 | 
            +
                    self.layer_number = max(1, layer_number)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    self.projection_size = config.kv_channels * config.num_attention_heads
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    # Per attention head and per partition values.
         | 
| 325 | 
            +
                    self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
         | 
| 326 | 
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    self.multi_query_attention = config.multi_query_attention
         | 
| 329 | 
            +
                    self.qkv_hidden_size = 3 * self.projection_size
         | 
| 330 | 
            +
                    if self.multi_query_attention:
         | 
| 331 | 
            +
                        self.num_multi_query_groups_per_partition = config.multi_query_group_num
         | 
| 332 | 
            +
                        self.qkv_hidden_size = (
         | 
| 333 | 
            +
                                self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
         | 
| 334 | 
            +
                        )
         | 
| 335 | 
            +
                    self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
         | 
| 336 | 
            +
                                                     bias=config.add_bias_linear or config.add_qkv_bias,
         | 
| 337 | 
            +
                                                     device=device, **_config_to_kwargs(config)
         | 
| 338 | 
            +
                                                     )
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    self.core_attention = CoreAttention(config, self.layer_number)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    # Output.
         | 
| 343 | 
            +
                    self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
         | 
| 344 | 
            +
                                           device=device, **_config_to_kwargs(config)
         | 
| 345 | 
            +
                                           )
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
         | 
| 348 | 
            +
                    if self.multi_query_attention:
         | 
| 349 | 
            +
                        num_attention_heads = self.num_multi_query_groups_per_partition
         | 
| 350 | 
            +
                    else:
         | 
| 351 | 
            +
                        num_attention_heads = self.num_attention_heads_per_partition
         | 
| 352 | 
            +
                    return torch.empty(
         | 
| 353 | 
            +
                        inference_max_sequence_len,
         | 
| 354 | 
            +
                        batch_size,
         | 
| 355 | 
            +
                        num_attention_heads,
         | 
| 356 | 
            +
                        self.hidden_size_per_attention_head,
         | 
| 357 | 
            +
                        dtype=dtype,
         | 
| 358 | 
            +
                        device=device,
         | 
| 359 | 
            +
                    )
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                def forward(
         | 
| 362 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
         | 
| 363 | 
            +
                ):
         | 
| 364 | 
            +
                    # hidden_states: [sq, b, h]
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    # =================================================
         | 
| 367 | 
            +
                    # Pre-allocate memory for key-values for inference.
         | 
| 368 | 
            +
                    # =================================================
         | 
| 369 | 
            +
                    # =====================
         | 
| 370 | 
            +
                    # Query, Key, and Value
         | 
| 371 | 
            +
                    # =====================
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
         | 
| 374 | 
            +
                    mixed_x_layer = self.query_key_value(hidden_states)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    if self.multi_query_attention:
         | 
| 377 | 
            +
                        (query_layer, key_layer, value_layer) = mixed_x_layer.split(
         | 
| 378 | 
            +
                            [
         | 
| 379 | 
            +
                                self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
         | 
| 380 | 
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         | 
| 381 | 
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         | 
| 382 | 
            +
                            ],
         | 
| 383 | 
            +
                            dim=-1,
         | 
| 384 | 
            +
                        )
         | 
| 385 | 
            +
                        query_layer = query_layer.view(
         | 
| 386 | 
            +
                            query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
                        key_layer = key_layer.view(
         | 
| 389 | 
            +
                            key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         | 
| 390 | 
            +
                        )
         | 
| 391 | 
            +
                        value_layer = value_layer.view(
         | 
| 392 | 
            +
                            value_layer.size()[:-1]
         | 
| 393 | 
            +
                            + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         | 
| 394 | 
            +
                        )
         | 
| 395 | 
            +
                    else:
         | 
| 396 | 
            +
                        new_tensor_shape = mixed_x_layer.size()[:-1] + \
         | 
| 397 | 
            +
                                           (self.num_attention_heads_per_partition,
         | 
| 398 | 
            +
                                            3 * self.hidden_size_per_attention_head)
         | 
| 399 | 
            +
                        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
         | 
| 402 | 
            +
                        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    # apply relative positional encoding (rotary embedding)
         | 
| 405 | 
            +
                    if rotary_pos_emb is not None:
         | 
| 406 | 
            +
                        query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
         | 
| 407 | 
            +
                        key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    # adjust key and value for inference
         | 
| 410 | 
            +
                    if kv_cache is not None:
         | 
| 411 | 
            +
                        cache_k, cache_v = kv_cache
         | 
| 412 | 
            +
                        key_layer = torch.cat((cache_k, key_layer), dim=0)
         | 
| 413 | 
            +
                        value_layer = torch.cat((cache_v, value_layer), dim=0)
         | 
| 414 | 
            +
                    if use_cache:
         | 
| 415 | 
            +
                        kv_cache = (key_layer, value_layer)
         | 
| 416 | 
            +
                    else:
         | 
| 417 | 
            +
                        kv_cache = None
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    if self.multi_query_attention:
         | 
| 420 | 
            +
                        key_layer = key_layer.unsqueeze(-2)
         | 
| 421 | 
            +
                        key_layer = key_layer.expand(
         | 
| 422 | 
            +
                            -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
         | 
| 423 | 
            +
                        )
         | 
| 424 | 
            +
                        key_layer = key_layer.contiguous().view(
         | 
| 425 | 
            +
                            key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         | 
| 426 | 
            +
                        )
         | 
| 427 | 
            +
                        value_layer = value_layer.unsqueeze(-2)
         | 
| 428 | 
            +
                        value_layer = value_layer.expand(
         | 
| 429 | 
            +
                            -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
         | 
| 430 | 
            +
                        )
         | 
| 431 | 
            +
                        value_layer = value_layer.contiguous().view(
         | 
| 432 | 
            +
                            value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         | 
| 433 | 
            +
                        )
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    # ==================================
         | 
| 436 | 
            +
                    # core attention computation
         | 
| 437 | 
            +
                    # ==================================
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    # =================
         | 
| 442 | 
            +
                    # Output. [sq, b, h]
         | 
| 443 | 
            +
                    # =================
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    output = self.dense(context_layer)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    return output, kv_cache
         | 
| 448 | 
            +
             | 
| 449 | 
            +
             | 
| 450 | 
            +
            def _config_to_kwargs(args):
         | 
| 451 | 
            +
                common_kwargs = {
         | 
| 452 | 
            +
                    "dtype": args.torch_dtype,
         | 
| 453 | 
            +
                }
         | 
| 454 | 
            +
                return common_kwargs
         | 
| 455 | 
            +
             | 
| 456 | 
            +
             | 
| 457 | 
            +
            class MLP(torch.nn.Module):
         | 
| 458 | 
            +
                """MLP.
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                MLP will take the input with h hidden state, project it to 4*h
         | 
| 461 | 
            +
                hidden dimension, perform nonlinear transformation, and project the
         | 
| 462 | 
            +
                state back into h hidden dimension.
         | 
| 463 | 
            +
                """
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 466 | 
            +
                    super(MLP, self).__init__()
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                    self.add_bias = config.add_bias_linear
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                    # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
         | 
| 471 | 
            +
                    self.dense_h_to_4h = nn.Linear(
         | 
| 472 | 
            +
                        config.hidden_size,
         | 
| 473 | 
            +
                        config.ffn_hidden_size * 2,
         | 
| 474 | 
            +
                        bias=self.add_bias,
         | 
| 475 | 
            +
                        device=device,
         | 
| 476 | 
            +
                        **_config_to_kwargs(config)
         | 
| 477 | 
            +
                    )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    def swiglu(x):
         | 
| 480 | 
            +
                        x = torch.chunk(x, 2, dim=-1)
         | 
| 481 | 
            +
                        return F.silu(x[0]) * x[1]
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    self.activation_func = swiglu
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    # Project back to h.
         | 
| 486 | 
            +
                    self.dense_4h_to_h = nn.Linear(
         | 
| 487 | 
            +
                        config.ffn_hidden_size,
         | 
| 488 | 
            +
                        config.hidden_size,
         | 
| 489 | 
            +
                        bias=self.add_bias,
         | 
| 490 | 
            +
                        device=device,
         | 
| 491 | 
            +
                        **_config_to_kwargs(config)
         | 
| 492 | 
            +
                    )
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                def forward(self, hidden_states):
         | 
| 495 | 
            +
                    # [s, b, 4hp]
         | 
| 496 | 
            +
                    intermediate_parallel = self.dense_h_to_4h(hidden_states)
         | 
| 497 | 
            +
                    intermediate_parallel = self.activation_func(intermediate_parallel)
         | 
| 498 | 
            +
                    # [s, b, h]
         | 
| 499 | 
            +
                    output = self.dense_4h_to_h(intermediate_parallel)
         | 
| 500 | 
            +
                    return output
         | 
| 501 | 
            +
             | 
| 502 | 
            +
             | 
| 503 | 
            +
            class GLMBlock(torch.nn.Module):
         | 
| 504 | 
            +
                """A single transformer layer.
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                Transformer layer takes input with size [s, b, h] and returns an
         | 
| 507 | 
            +
                output of the same size.
         | 
| 508 | 
            +
                """
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         | 
| 511 | 
            +
                    super(GLMBlock, self).__init__()
         | 
| 512 | 
            +
                    self.layer_number = layer_number
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         | 
| 519 | 
            +
                    # Layernorm on the input data.
         | 
| 520 | 
            +
                    self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 521 | 
            +
                                                         dtype=config.torch_dtype)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    # Self attention.
         | 
| 524 | 
            +
                    self.self_attention = SelfAttention(config, layer_number, device=device)
         | 
| 525 | 
            +
                    self.hidden_dropout = config.hidden_dropout
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    # Layernorm on the attention output
         | 
| 528 | 
            +
                    self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 529 | 
            +
                                                                  dtype=config.torch_dtype)
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    # MLP
         | 
| 532 | 
            +
                    self.mlp = MLP(config, device=device)
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                def forward(
         | 
| 535 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
         | 
| 536 | 
            +
                ):
         | 
| 537 | 
            +
                    # hidden_states: [s, b, h]
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    # Layer norm at the beginning of the transformer layer.
         | 
| 540 | 
            +
                    layernorm_output = self.input_layernorm(hidden_states)
         | 
| 541 | 
            +
                    # Self attention.
         | 
| 542 | 
            +
                    attention_output, kv_cache = self.self_attention(
         | 
| 543 | 
            +
                        layernorm_output,
         | 
| 544 | 
            +
                        attention_mask,
         | 
| 545 | 
            +
                        rotary_pos_emb,
         | 
| 546 | 
            +
                        kv_cache=kv_cache,
         | 
| 547 | 
            +
                        use_cache=use_cache
         | 
| 548 | 
            +
                    )
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    # Residual connection.
         | 
| 551 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 552 | 
            +
                        residual = layernorm_output
         | 
| 553 | 
            +
                    else:
         | 
| 554 | 
            +
                        residual = hidden_states
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
         | 
| 557 | 
            +
                    layernorm_input = residual + layernorm_input
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    # Layer norm post the self attention.
         | 
| 560 | 
            +
                    layernorm_output = self.post_attention_layernorm(layernorm_input)
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    # MLP.
         | 
| 563 | 
            +
                    mlp_output = self.mlp(layernorm_output)
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    # Second residual connection.
         | 
| 566 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 567 | 
            +
                        residual = layernorm_output
         | 
| 568 | 
            +
                    else:
         | 
| 569 | 
            +
                        residual = layernorm_input
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
         | 
| 572 | 
            +
                    output = residual + output
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    return output, kv_cache
         | 
| 575 | 
            +
             | 
| 576 | 
            +
             | 
| 577 | 
            +
            class GLMTransformer(torch.nn.Module):
         | 
| 578 | 
            +
                """Transformer class."""
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 581 | 
            +
                    super(GLMTransformer, self).__init__()
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 584 | 
            +
                    self.post_layer_norm = config.post_layer_norm
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    # Number of layers.
         | 
| 587 | 
            +
                    self.num_layers = config.num_layers
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                    # Transformer layers.
         | 
| 590 | 
            +
                    def build_layer(layer_number):
         | 
| 591 | 
            +
                        return GLMBlock(config, layer_number, device=device)
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                    self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
         | 
| 594 | 
            +
             | 
| 595 | 
            +
                    if self.post_layer_norm:
         | 
| 596 | 
            +
                        LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         | 
| 597 | 
            +
                        # Final layer norm before output.
         | 
| 598 | 
            +
                        self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 599 | 
            +
                                                             dtype=config.torch_dtype)
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    self.gradient_checkpointing = False
         | 
| 602 | 
            +
             | 
| 603 | 
            +
                def _get_layer(self, layer_number):
         | 
| 604 | 
            +
                    return self.layers[layer_number]
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                def forward(
         | 
| 607 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
         | 
| 608 | 
            +
                        use_cache: Optional[bool] = True,
         | 
| 609 | 
            +
                        output_hidden_states: Optional[bool] = False,
         | 
| 610 | 
            +
                ):
         | 
| 611 | 
            +
                    if not kv_caches:
         | 
| 612 | 
            +
                        kv_caches = [None for _ in range(self.num_layers)]
         | 
| 613 | 
            +
                    presents = () if use_cache else None
         | 
| 614 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 615 | 
            +
                        if use_cache:
         | 
| 616 | 
            +
                            logger.warning_once(
         | 
| 617 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 618 | 
            +
                            )
         | 
| 619 | 
            +
                            use_cache = False
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                    all_self_attentions = None
         | 
| 622 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 623 | 
            +
                    for index in range(self.num_layers):
         | 
| 624 | 
            +
                        if output_hidden_states:
         | 
| 625 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                        layer = self._get_layer(index)
         | 
| 628 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 629 | 
            +
                            layer_ret = torch.utils.checkpoint.checkpoint(
         | 
| 630 | 
            +
                                layer,
         | 
| 631 | 
            +
                                hidden_states,
         | 
| 632 | 
            +
                                attention_mask,
         | 
| 633 | 
            +
                                rotary_pos_emb,
         | 
| 634 | 
            +
                                kv_caches[index],
         | 
| 635 | 
            +
                                use_cache
         | 
| 636 | 
            +
                            )
         | 
| 637 | 
            +
                        else:
         | 
| 638 | 
            +
                            layer_ret = layer(
         | 
| 639 | 
            +
                                hidden_states,
         | 
| 640 | 
            +
                                attention_mask,
         | 
| 641 | 
            +
                                rotary_pos_emb,
         | 
| 642 | 
            +
                                kv_cache=kv_caches[index],
         | 
| 643 | 
            +
                                use_cache=use_cache
         | 
| 644 | 
            +
                            )
         | 
| 645 | 
            +
                        hidden_states, kv_cache = layer_ret
         | 
| 646 | 
            +
                        if use_cache:
         | 
| 647 | 
            +
                            presents = presents + (kv_cache,)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                    if output_hidden_states:
         | 
| 650 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    # Final layer norm.
         | 
| 653 | 
            +
                    if self.post_layer_norm:
         | 
| 654 | 
            +
                        hidden_states = self.final_layernorm(hidden_states)
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                    return hidden_states, presents, all_hidden_states, all_self_attentions
         | 
| 657 | 
            +
             | 
| 658 | 
            +
             | 
| 659 | 
            +
            class ChatGLMPreTrainedModel(PreTrainedModel):
         | 
| 660 | 
            +
                """
         | 
| 661 | 
            +
                An abstract class to handle weights initialization and
         | 
| 662 | 
            +
                a simple interface for downloading and loading pretrained models.
         | 
| 663 | 
            +
                """
         | 
| 664 | 
            +
             | 
| 665 | 
            +
                is_parallelizable = False
         | 
| 666 | 
            +
                supports_gradient_checkpointing = True
         | 
| 667 | 
            +
                config_class = ChatGLMConfig
         | 
| 668 | 
            +
                base_model_prefix = "transformer"
         | 
| 669 | 
            +
                _no_split_modules = ["GLMBlock"]
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                def _init_weights(self, module: nn.Module):
         | 
| 672 | 
            +
                    """Initialize the weights."""
         | 
| 673 | 
            +
                    return
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                def get_masks(self, input_ids, past_key_values, padding_mask=None):
         | 
| 676 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 677 | 
            +
                    full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
         | 
| 678 | 
            +
                    full_attention_mask.tril_()
         | 
| 679 | 
            +
                    past_length = 0
         | 
| 680 | 
            +
                    if past_key_values:
         | 
| 681 | 
            +
                        past_length = past_key_values[0][0].shape[0]
         | 
| 682 | 
            +
                    if past_length:
         | 
| 683 | 
            +
                        full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
         | 
| 684 | 
            +
                                                                    device=input_ids.device), full_attention_mask), dim=-1)
         | 
| 685 | 
            +
                    if padding_mask is not None:
         | 
| 686 | 
            +
                        full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
         | 
| 687 | 
            +
                    if not past_length and padding_mask is not None:
         | 
| 688 | 
            +
                        full_attention_mask -= padding_mask.unsqueeze(-1) - 1
         | 
| 689 | 
            +
                    full_attention_mask = (full_attention_mask < 0.5).bool()
         | 
| 690 | 
            +
                    full_attention_mask.unsqueeze_(1)
         | 
| 691 | 
            +
                    return full_attention_mask
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                def get_position_ids(self, input_ids, device):
         | 
| 694 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 695 | 
            +
                    position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
         | 
| 696 | 
            +
                    return position_ids
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 699 | 
            +
                    if isinstance(module, GLMTransformer):
         | 
| 700 | 
            +
                        module.gradient_checkpointing = value
         | 
| 701 | 
            +
             | 
| 702 | 
            +
             | 
| 703 | 
            +
            class Embedding(torch.nn.Module):
         | 
| 704 | 
            +
                """Language model embeddings."""
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 707 | 
            +
                    super(Embedding, self).__init__()
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 710 | 
            +
                    # Word embeddings (parallel).
         | 
| 711 | 
            +
                    self.word_embeddings = nn.Embedding(
         | 
| 712 | 
            +
                        config.padded_vocab_size,
         | 
| 713 | 
            +
                        self.hidden_size,
         | 
| 714 | 
            +
                        dtype=config.torch_dtype,
         | 
| 715 | 
            +
                        device=device
         | 
| 716 | 
            +
                    )
         | 
| 717 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                def forward(self, input_ids):
         | 
| 720 | 
            +
                    # Embeddings.
         | 
| 721 | 
            +
                    words_embeddings = self.word_embeddings(input_ids)
         | 
| 722 | 
            +
                    embeddings = words_embeddings
         | 
| 723 | 
            +
                    # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
         | 
| 724 | 
            +
                    embeddings = embeddings.transpose(0, 1).contiguous()
         | 
| 725 | 
            +
                    # If the input flag for fp32 residual connection is set, convert for float.
         | 
| 726 | 
            +
                    if self.fp32_residual_connection:
         | 
| 727 | 
            +
                        embeddings = embeddings.float()
         | 
| 728 | 
            +
                    return embeddings
         | 
| 729 | 
            +
             | 
| 730 | 
            +
             | 
| 731 | 
            +
            class ChatGLMModel(ChatGLMPreTrainedModel):
         | 
| 732 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
         | 
| 733 | 
            +
                    super().__init__(config)
         | 
| 734 | 
            +
                    if empty_init:
         | 
| 735 | 
            +
                        init_method = skip_init
         | 
| 736 | 
            +
                    else:
         | 
| 737 | 
            +
                        init_method = default_init
         | 
| 738 | 
            +
                    init_kwargs = {}
         | 
| 739 | 
            +
                    if device is not None:
         | 
| 740 | 
            +
                        init_kwargs["device"] = device
         | 
| 741 | 
            +
                    self.embedding = init_method(Embedding, config, **init_kwargs)
         | 
| 742 | 
            +
                    self.num_layers = config.num_layers
         | 
| 743 | 
            +
                    self.multi_query_group_num = config.multi_query_group_num
         | 
| 744 | 
            +
                    self.kv_channels = config.kv_channels
         | 
| 745 | 
            +
             | 
| 746 | 
            +
                    # Rotary positional embeddings
         | 
| 747 | 
            +
                    self.seq_length = config.seq_length
         | 
| 748 | 
            +
                    rotary_dim = (
         | 
| 749 | 
            +
                        config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
         | 
| 750 | 
            +
                    )
         | 
| 751 | 
            +
             | 
| 752 | 
            +
                    self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
         | 
| 753 | 
            +
                                                          dtype=config.torch_dtype)
         | 
| 754 | 
            +
                    self.encoder = init_method(GLMTransformer, config, **init_kwargs)
         | 
| 755 | 
            +
                    self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
         | 
| 756 | 
            +
                                                    dtype=config.torch_dtype, **init_kwargs)
         | 
| 757 | 
            +
                    self.pre_seq_len = config.pre_seq_len
         | 
| 758 | 
            +
                    self.prefix_projection = config.prefix_projection
         | 
| 759 | 
            +
                    if self.pre_seq_len is not None:
         | 
| 760 | 
            +
                        for param in self.parameters():
         | 
| 761 | 
            +
                            param.requires_grad = False
         | 
| 762 | 
            +
                        self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         | 
| 763 | 
            +
                        self.prefix_encoder = PrefixEncoder(config)
         | 
| 764 | 
            +
                        self.dropout = torch.nn.Dropout(0.1)
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                def get_input_embeddings(self):
         | 
| 767 | 
            +
                    return self.embedding.word_embeddings
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                def get_prompt(self, batch_size, device, dtype=torch.half):
         | 
| 770 | 
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
         | 
| 771 | 
            +
                    past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
         | 
| 772 | 
            +
                    past_key_values = past_key_values.view(
         | 
| 773 | 
            +
                        batch_size,
         | 
| 774 | 
            +
                        self.pre_seq_len,
         | 
| 775 | 
            +
                        self.num_layers * 2,
         | 
| 776 | 
            +
                        self.multi_query_group_num,
         | 
| 777 | 
            +
                        self.kv_channels
         | 
| 778 | 
            +
                    )
         | 
| 779 | 
            +
                    # seq_len, b, nh, hidden_size
         | 
| 780 | 
            +
                    past_key_values = self.dropout(past_key_values)
         | 
| 781 | 
            +
                    past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
         | 
| 782 | 
            +
                    return past_key_values
         | 
| 783 | 
            +
             | 
| 784 | 
            +
                def forward(
         | 
| 785 | 
            +
                        self,
         | 
| 786 | 
            +
                        input_ids,
         | 
| 787 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 788 | 
            +
                        attention_mask: Optional[torch.BoolTensor] = None,
         | 
| 789 | 
            +
                        full_attention_mask: Optional[torch.BoolTensor] = None,
         | 
| 790 | 
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 791 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 792 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 793 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 794 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 795 | 
            +
                ):
         | 
| 796 | 
            +
                    output_hidden_states = (
         | 
| 797 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 798 | 
            +
                    )
         | 
| 799 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 800 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 801 | 
            +
             | 
| 802 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    if inputs_embeds is None:
         | 
| 805 | 
            +
                        inputs_embeds = self.embedding(input_ids)
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    if self.pre_seq_len is not None:
         | 
| 808 | 
            +
                        if past_key_values is None:
         | 
| 809 | 
            +
                            past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
         | 
| 810 | 
            +
                                                              dtype=inputs_embeds.dtype)
         | 
| 811 | 
            +
                        if attention_mask is not None:
         | 
| 812 | 
            +
                            attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
         | 
| 813 | 
            +
                                                        attention_mask], dim=-1)
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    if full_attention_mask is None:
         | 
| 816 | 
            +
                        if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
         | 
| 817 | 
            +
                            full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    # Rotary positional embeddings
         | 
| 820 | 
            +
                    rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
         | 
| 821 | 
            +
                    if position_ids is not None:
         | 
| 822 | 
            +
                        rotary_pos_emb = rotary_pos_emb[position_ids]
         | 
| 823 | 
            +
                    else:
         | 
| 824 | 
            +
                        rotary_pos_emb = rotary_pos_emb[None, :seq_length]
         | 
| 825 | 
            +
                    rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                    # Run encoder.
         | 
| 828 | 
            +
                    hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
         | 
| 829 | 
            +
                        inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
         | 
| 830 | 
            +
                        kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
         | 
| 831 | 
            +
                    )
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    if not return_dict:
         | 
| 834 | 
            +
                        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 837 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 838 | 
            +
                        past_key_values=presents,
         | 
| 839 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 840 | 
            +
                        attentions=all_self_attentions,
         | 
| 841 | 
            +
                    )
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                def quantize(self, weight_bit_width: int):
         | 
| 844 | 
            +
                    from .quantization import quantize
         | 
| 845 | 
            +
                    quantize(self.encoder, weight_bit_width)
         | 
| 846 | 
            +
                    return self
         | 
| 847 | 
            +
             | 
| 848 | 
            +
             | 
| 849 | 
            +
            class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
         | 
| 850 | 
            +
                def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
         | 
| 851 | 
            +
                    super().__init__(config)
         | 
| 852 | 
            +
             | 
| 853 | 
            +
                    self.max_sequence_length = config.max_length
         | 
| 854 | 
            +
                    self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
         | 
| 855 | 
            +
                    self.config = config
         | 
| 856 | 
            +
                    self.quantized = False
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    if self.config.quantization_bit:
         | 
| 859 | 
            +
                        self.quantize(self.config.quantization_bit, empty_init=True)
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                def _update_model_kwargs_for_generation(
         | 
| 862 | 
            +
                        self,
         | 
| 863 | 
            +
                        outputs: ModelOutput,
         | 
| 864 | 
            +
                        model_kwargs: Dict[str, Any],
         | 
| 865 | 
            +
                        is_encoder_decoder: bool = False,
         | 
| 866 | 
            +
                        standardize_cache_format: bool = False,
         | 
| 867 | 
            +
                ) -> Dict[str, Any]:
         | 
| 868 | 
            +
                    # update past_key_values
         | 
| 869 | 
            +
                    model_kwargs["past_key_values"] = self._extract_past_from_model_output(
         | 
| 870 | 
            +
                        outputs, standardize_cache_format=standardize_cache_format
         | 
| 871 | 
            +
                    )
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    # update attention mask
         | 
| 874 | 
            +
                    if "attention_mask" in model_kwargs:
         | 
| 875 | 
            +
                        attention_mask = model_kwargs["attention_mask"]
         | 
| 876 | 
            +
                        model_kwargs["attention_mask"] = torch.cat(
         | 
| 877 | 
            +
                            [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
         | 
| 878 | 
            +
                        )
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                    # update position ids
         | 
| 881 | 
            +
                    if "position_ids" in model_kwargs:
         | 
| 882 | 
            +
                        position_ids = model_kwargs["position_ids"]
         | 
| 883 | 
            +
                        new_position_id = position_ids[..., -1:].clone()
         | 
| 884 | 
            +
                        new_position_id += 1
         | 
| 885 | 
            +
                        model_kwargs["position_ids"] = torch.cat(
         | 
| 886 | 
            +
                            [position_ids, new_position_id], dim=-1
         | 
| 887 | 
            +
                        )
         | 
| 888 | 
            +
             | 
| 889 | 
            +
                    model_kwargs["is_first_forward"] = False
         | 
| 890 | 
            +
                    return model_kwargs
         | 
| 891 | 
            +
             | 
| 892 | 
            +
                def prepare_inputs_for_generation(
         | 
| 893 | 
            +
                        self,
         | 
| 894 | 
            +
                        input_ids: torch.LongTensor,
         | 
| 895 | 
            +
                        past_key_values: Optional[torch.Tensor] = None,
         | 
| 896 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 897 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 898 | 
            +
                        is_first_forward: bool = True,
         | 
| 899 | 
            +
                        **kwargs
         | 
| 900 | 
            +
                ) -> dict:
         | 
| 901 | 
            +
                    # only last token for input_ids if past is not None
         | 
| 902 | 
            +
                    if position_ids is None:
         | 
| 903 | 
            +
                        position_ids = self.get_position_ids(input_ids, device=input_ids.device)
         | 
| 904 | 
            +
                    if not is_first_forward:
         | 
| 905 | 
            +
                        position_ids = position_ids[..., -1:]
         | 
| 906 | 
            +
                        input_ids = input_ids[:, -1:]
         | 
| 907 | 
            +
                    return {
         | 
| 908 | 
            +
                        "input_ids": input_ids,
         | 
| 909 | 
            +
                        "past_key_values": past_key_values,
         | 
| 910 | 
            +
                        "position_ids": position_ids,
         | 
| 911 | 
            +
                        "attention_mask": attention_mask,
         | 
| 912 | 
            +
                        "return_last_logit": True
         | 
| 913 | 
            +
                    }
         | 
| 914 | 
            +
             | 
| 915 | 
            +
                def forward(
         | 
| 916 | 
            +
                        self,
         | 
| 917 | 
            +
                        input_ids: Optional[torch.Tensor] = None,
         | 
| 918 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 919 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 920 | 
            +
                        past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
         | 
| 921 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 922 | 
            +
                        labels: Optional[torch.Tensor] = None,
         | 
| 923 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 924 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 925 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 926 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 927 | 
            +
                        return_last_logit: Optional[bool] = False,
         | 
| 928 | 
            +
                ):
         | 
| 929 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 930 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 933 | 
            +
                        input_ids=input_ids,
         | 
| 934 | 
            +
                        position_ids=position_ids,
         | 
| 935 | 
            +
                        attention_mask=attention_mask,
         | 
| 936 | 
            +
                        past_key_values=past_key_values,
         | 
| 937 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 938 | 
            +
                        use_cache=use_cache,
         | 
| 939 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 940 | 
            +
                        return_dict=return_dict,
         | 
| 941 | 
            +
                    )
         | 
| 942 | 
            +
             | 
| 943 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 944 | 
            +
                    if return_last_logit:
         | 
| 945 | 
            +
                        hidden_states = hidden_states[-1:]
         | 
| 946 | 
            +
                    lm_logits = self.transformer.output_layer(hidden_states)
         | 
| 947 | 
            +
                    lm_logits = lm_logits.transpose(0, 1).contiguous()
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                    loss = None
         | 
| 950 | 
            +
                    if labels is not None:
         | 
| 951 | 
            +
                        lm_logits = lm_logits.to(torch.float32)
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 954 | 
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         | 
| 955 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 956 | 
            +
                        # Flatten the tokens
         | 
| 957 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=-100)
         | 
| 958 | 
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         | 
| 959 | 
            +
             | 
| 960 | 
            +
                        lm_logits = lm_logits.to(hidden_states.dtype)
         | 
| 961 | 
            +
                        loss = loss.to(hidden_states.dtype)
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                    if not return_dict:
         | 
| 964 | 
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         | 
| 965 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 968 | 
            +
                        loss=loss,
         | 
| 969 | 
            +
                        logits=lm_logits,
         | 
| 970 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 971 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 972 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 973 | 
            +
                    )
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                @staticmethod
         | 
| 976 | 
            +
                def _reorder_cache(
         | 
| 977 | 
            +
                        past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
         | 
| 978 | 
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
         | 
| 979 | 
            +
                    """
         | 
| 980 | 
            +
                    This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
         | 
| 981 | 
            +
                    [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
         | 
| 982 | 
            +
                    beam_idx at every generation step.
         | 
| 983 | 
            +
             | 
| 984 | 
            +
                    Output shares the same memory storage as `past`.
         | 
| 985 | 
            +
                    """
         | 
| 986 | 
            +
                    return tuple(
         | 
| 987 | 
            +
                        (
         | 
| 988 | 
            +
                            layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
         | 
| 989 | 
            +
                            layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
         | 
| 990 | 
            +
                        )
         | 
| 991 | 
            +
                        for layer_past in past
         | 
| 992 | 
            +
                    )
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                def process_response(self, response):
         | 
| 995 | 
            +
                    response = response.strip()
         | 
| 996 | 
            +
                    response = response.replace("[[训练时间]]", "2023年")
         | 
| 997 | 
            +
                    return response
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
         | 
| 1000 | 
            +
                    prompt = tokenizer.build_prompt(query, history=history)
         | 
| 1001 | 
            +
                    inputs = tokenizer([prompt], return_tensors="pt")
         | 
| 1002 | 
            +
                    inputs = inputs.to(self.device)
         | 
| 1003 | 
            +
                    return inputs
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
         | 
| 1006 | 
            +
                    if history:
         | 
| 1007 | 
            +
                        prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
         | 
| 1008 | 
            +
                        input_ids = tokenizer.encode(prompt, add_special_tokens=False)
         | 
| 1009 | 
            +
                        input_ids = input_ids[1:]
         | 
| 1010 | 
            +
                        inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
         | 
| 1011 | 
            +
                    else:
         | 
| 1012 | 
            +
                        prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
         | 
| 1013 | 
            +
                        inputs = tokenizer([prompt], return_tensors="pt")
         | 
| 1014 | 
            +
                    inputs = inputs.to(self.device)
         | 
| 1015 | 
            +
                    return inputs
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                @torch.inference_mode()
         | 
| 1018 | 
            +
                def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
         | 
| 1019 | 
            +
                         do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
         | 
| 1020 | 
            +
                    if history is None:
         | 
| 1021 | 
            +
                        history = []
         | 
| 1022 | 
            +
                    if logits_processor is None:
         | 
| 1023 | 
            +
                        logits_processor = LogitsProcessorList()
         | 
| 1024 | 
            +
                    logits_processor.append(InvalidScoreLogitsProcessor())
         | 
| 1025 | 
            +
                    gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
         | 
| 1026 | 
            +
                                  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         | 
| 1027 | 
            +
                    inputs = self.build_inputs(tokenizer, query, history=history)
         | 
| 1028 | 
            +
                    outputs = self.generate(**inputs, **gen_kwargs)
         | 
| 1029 | 
            +
                    outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
         | 
| 1030 | 
            +
                    response = tokenizer.decode(outputs)
         | 
| 1031 | 
            +
                    response = self.process_response(response)
         | 
| 1032 | 
            +
                    history = history + [(query, response)]
         | 
| 1033 | 
            +
                    return response, history
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                @torch.inference_mode()
         | 
| 1036 | 
            +
                def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
         | 
| 1037 | 
            +
                                max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
         | 
| 1038 | 
            +
                                return_past_key_values=False, **kwargs):
         | 
| 1039 | 
            +
                    if history is None:
         | 
| 1040 | 
            +
                        history = []
         | 
| 1041 | 
            +
                    if logits_processor is None:
         | 
| 1042 | 
            +
                        logits_processor = LogitsProcessorList()
         | 
| 1043 | 
            +
                    logits_processor.append(InvalidScoreLogitsProcessor())
         | 
| 1044 | 
            +
                    gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
         | 
| 1045 | 
            +
                                  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         | 
| 1046 | 
            +
                    if past_key_values is None and not return_past_key_values:
         | 
| 1047 | 
            +
                        inputs = self.build_inputs(tokenizer, query, history=history)
         | 
| 1048 | 
            +
                    else:
         | 
| 1049 | 
            +
                        inputs = self.build_stream_inputs(tokenizer, query, history=history)
         | 
| 1050 | 
            +
                    if past_key_values is not None:
         | 
| 1051 | 
            +
                        past_length = past_key_values[0][0].shape[0]
         | 
| 1052 | 
            +
                        if self.transformer.pre_seq_len is not None:
         | 
| 1053 | 
            +
                            past_length -= self.transformer.pre_seq_len
         | 
| 1054 | 
            +
                        inputs.position_ids += past_length
         | 
| 1055 | 
            +
                        attention_mask = inputs.attention_mask
         | 
| 1056 | 
            +
                        attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
         | 
| 1057 | 
            +
                        inputs['attention_mask'] = attention_mask
         | 
| 1058 | 
            +
                    for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
         | 
| 1059 | 
            +
                                                        return_past_key_values=return_past_key_values, **gen_kwargs):
         | 
| 1060 | 
            +
                        if return_past_key_values:
         | 
| 1061 | 
            +
                            outputs, past_key_values = outputs
         | 
| 1062 | 
            +
                        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
         | 
| 1063 | 
            +
                        response = tokenizer.decode(outputs)
         | 
| 1064 | 
            +
                        if response and response[-1] != "�":
         | 
| 1065 | 
            +
                            response = self.process_response(response)
         | 
| 1066 | 
            +
                            new_history = history + [(query, response)]
         | 
| 1067 | 
            +
                            if return_past_key_values:
         | 
| 1068 | 
            +
                                yield response, new_history, past_key_values
         | 
| 1069 | 
            +
                            else:
         | 
| 1070 | 
            +
                                yield response, new_history
         | 
| 1071 | 
            +
             | 
| 1072 | 
            +
                @torch.inference_mode()
         | 
| 1073 | 
            +
                def stream_generate(
         | 
| 1074 | 
            +
                        self,
         | 
| 1075 | 
            +
                        input_ids,
         | 
| 1076 | 
            +
                        generation_config: Optional[GenerationConfig] = None,
         | 
| 1077 | 
            +
                        logits_processor: Optional[LogitsProcessorList] = None,
         | 
| 1078 | 
            +
                        stopping_criteria: Optional[StoppingCriteriaList] = None,
         | 
| 1079 | 
            +
                        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
         | 
| 1080 | 
            +
                        return_past_key_values=False,
         | 
| 1081 | 
            +
                        **kwargs,
         | 
| 1082 | 
            +
                ):
         | 
| 1083 | 
            +
                    batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
         | 
| 1084 | 
            +
             | 
| 1085 | 
            +
                    if generation_config is None:
         | 
| 1086 | 
            +
                        generation_config = self.generation_config
         | 
| 1087 | 
            +
                    generation_config = copy.deepcopy(generation_config)
         | 
| 1088 | 
            +
                    model_kwargs = generation_config.update(**kwargs)
         | 
| 1089 | 
            +
                    bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
         | 
| 1090 | 
            +
             | 
| 1091 | 
            +
                    if isinstance(eos_token_id, int):
         | 
| 1092 | 
            +
                        eos_token_id = [eos_token_id]
         | 
| 1093 | 
            +
             | 
| 1094 | 
            +
                    has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
         | 
| 1095 | 
            +
                    if has_default_max_length and generation_config.max_new_tokens is None:
         | 
| 1096 | 
            +
                        warnings.warn(
         | 
| 1097 | 
            +
                            f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
         | 
| 1098 | 
            +
                            "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
         | 
| 1099 | 
            +
                            " recommend using `max_new_tokens` to control the maximum length of the generation.",
         | 
| 1100 | 
            +
                            UserWarning,
         | 
| 1101 | 
            +
                        )
         | 
| 1102 | 
            +
                    elif generation_config.max_new_tokens is not None:
         | 
| 1103 | 
            +
                        generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
         | 
| 1104 | 
            +
                        if not has_default_max_length:
         | 
| 1105 | 
            +
                            logger.warn(
         | 
| 1106 | 
            +
                                f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
         | 
| 1107 | 
            +
                                f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
         | 
| 1108 | 
            +
                                "Please refer to the documentation for more information. "
         | 
| 1109 | 
            +
                                "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
         | 
| 1110 | 
            +
                                UserWarning,
         | 
| 1111 | 
            +
                            )
         | 
| 1112 | 
            +
             | 
| 1113 | 
            +
                    if input_ids_seq_length >= generation_config.max_length:
         | 
| 1114 | 
            +
                        input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
         | 
| 1115 | 
            +
                        logger.warning(
         | 
| 1116 | 
            +
                            f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
         | 
| 1117 | 
            +
                            f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
         | 
| 1118 | 
            +
                            " increasing `max_new_tokens`."
         | 
| 1119 | 
            +
                        )
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
                    # 2. Set generation parameters if not already defined
         | 
| 1122 | 
            +
                    logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
         | 
| 1123 | 
            +
                    stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
         | 
| 1124 | 
            +
             | 
| 1125 | 
            +
                    logits_processor = self._get_logits_processor(
         | 
| 1126 | 
            +
                        generation_config=generation_config,
         | 
| 1127 | 
            +
                        input_ids_seq_length=input_ids_seq_length,
         | 
| 1128 | 
            +
                        encoder_input_ids=input_ids,
         | 
| 1129 | 
            +
                        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
         | 
| 1130 | 
            +
                        logits_processor=logits_processor,
         | 
| 1131 | 
            +
                    )
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                    stopping_criteria = self._get_stopping_criteria(
         | 
| 1134 | 
            +
                        generation_config=generation_config, stopping_criteria=stopping_criteria
         | 
| 1135 | 
            +
                    )
         | 
| 1136 | 
            +
                    logits_warper = self._get_logits_warper(generation_config)
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
                    unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
         | 
| 1139 | 
            +
                    scores = None
         | 
| 1140 | 
            +
                    while True:
         | 
| 1141 | 
            +
                        model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
         | 
| 1142 | 
            +
                        # forward pass to get next token
         | 
| 1143 | 
            +
                        outputs = self(
         | 
| 1144 | 
            +
                            **model_inputs,
         | 
| 1145 | 
            +
                            return_dict=True,
         | 
| 1146 | 
            +
                            output_attentions=False,
         | 
| 1147 | 
            +
                            output_hidden_states=False,
         | 
| 1148 | 
            +
                        )
         | 
| 1149 | 
            +
             | 
| 1150 | 
            +
                        next_token_logits = outputs.logits[:, -1, :]
         | 
| 1151 | 
            +
             | 
| 1152 | 
            +
                        # pre-process distribution
         | 
| 1153 | 
            +
                        next_token_scores = logits_processor(input_ids, next_token_logits)
         | 
| 1154 | 
            +
                        next_token_scores = logits_warper(input_ids, next_token_scores)
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
                        # sample
         | 
| 1157 | 
            +
                        probs = nn.functional.softmax(next_token_scores, dim=-1)
         | 
| 1158 | 
            +
                        if generation_config.do_sample:
         | 
| 1159 | 
            +
                            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
         | 
| 1160 | 
            +
                        else:
         | 
| 1161 | 
            +
                            next_tokens = torch.argmax(probs, dim=-1)
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
                        # update generated ids, model inputs, and length for next step
         | 
| 1164 | 
            +
                        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
         | 
| 1165 | 
            +
                        model_kwargs = self._update_model_kwargs_for_generation(
         | 
| 1166 | 
            +
                            outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
         | 
| 1167 | 
            +
                        )
         | 
| 1168 | 
            +
                        unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
         | 
| 1169 | 
            +
                        if return_past_key_values:
         | 
| 1170 | 
            +
                            yield input_ids, outputs.past_key_values
         | 
| 1171 | 
            +
                        else:
         | 
| 1172 | 
            +
                            yield input_ids
         | 
| 1173 | 
            +
                        # stop when each sentence is finished, or if we exceed the maximum length
         | 
| 1174 | 
            +
                        if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
         | 
| 1175 | 
            +
                            break
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
         | 
| 1178 | 
            +
                    if bits == 0:
         | 
| 1179 | 
            +
                        return
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                    from .quantization import quantize
         | 
| 1182 | 
            +
             | 
| 1183 | 
            +
                    if self.quantized:
         | 
| 1184 | 
            +
                        logger.info("Already quantized.")
         | 
| 1185 | 
            +
                        return self
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                    self.quantized = True
         | 
| 1188 | 
            +
             | 
| 1189 | 
            +
                    self.config.quantization_bit = bits
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
                    self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
         | 
| 1192 | 
            +
                                                        **kwargs)
         | 
| 1193 | 
            +
                    return self
         | 
    	
        pytorch_model-00001-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cdf1bf57d519abe11043e9121314e76bc0934993e649a9e438a4b0894f4e6ee8
         | 
| 3 | 
            +
            size 1827780615
         | 
    	
        pytorch_model-00002-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1cd596bd15905248b20b755daf12a02a8fa963da09b59da7fdc896e17bfa518c
         | 
| 3 | 
            +
            size 1968299005
         | 
    	
        pytorch_model-00003-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:812edc55c969d2ef82dcda8c275e379ef689761b13860da8ea7c1f3a475975c8
         | 
| 3 | 
            +
            size 1927414561
         | 
    	
        pytorch_model-00004-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:555c17fac2d80e38ba332546dc759b6b7e07aee21e5d0d7826375b998e5aada3
         | 
| 3 | 
            +
            size 1815225523
         | 
    	
        pytorch_model-00005-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cb85560ccfa77a9e4dd67a838c8d1eeb0071427fd8708e18be9c77224969ef48
         | 
| 3 | 
            +
            size 1968299069
         | 
    	
        pytorch_model-00006-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:09ebd811227d992350b92b2c3491f677ae1f3c586b38abe95784fd2f7d23d5f2
         | 
| 3 | 
            +
            size 1927414561
         | 
    	
        pytorch_model-00007-of-00007.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:316e007bc727f3cbba432d29e1d3e35ac8ef8eb52df4db9f0609d091a43c69cb
         | 
| 3 | 
            +
            size 1052808067
         | 
    	
        pytorch_model.bin.index.json
    ADDED
    
    | @@ -0,0 +1,207 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 12487168064
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "transformer.embedding.word_embeddings.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 7 | 
            +
                "transformer.encoder.final_layernorm.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 8 | 
            +
                "transformer.encoder.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 9 | 
            +
                "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 10 | 
            +
                "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 11 | 
            +
                "transformer.encoder.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 12 | 
            +
                "transformer.encoder.layers.0.self_attention.dense.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 13 | 
            +
                "transformer.encoder.layers.0.self_attention.query_key_value.bias": "pytorch_model-00001-of-00007.bin",
         | 
| 14 | 
            +
                "transformer.encoder.layers.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 15 | 
            +
                "transformer.encoder.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 16 | 
            +
                "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 17 | 
            +
                "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 18 | 
            +
                "transformer.encoder.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 19 | 
            +
                "transformer.encoder.layers.1.self_attention.dense.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 20 | 
            +
                "transformer.encoder.layers.1.self_attention.query_key_value.bias": "pytorch_model-00001-of-00007.bin",
         | 
| 21 | 
            +
                "transformer.encoder.layers.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 22 | 
            +
                "transformer.encoder.layers.10.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 23 | 
            +
                "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 24 | 
            +
                "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 25 | 
            +
                "transformer.encoder.layers.10.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 26 | 
            +
                "transformer.encoder.layers.10.self_attention.dense.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 27 | 
            +
                "transformer.encoder.layers.10.self_attention.query_key_value.bias": "pytorch_model-00003-of-00007.bin",
         | 
| 28 | 
            +
                "transformer.encoder.layers.10.self_attention.query_key_value.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 29 | 
            +
                "transformer.encoder.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 30 | 
            +
                "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 31 | 
            +
                "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 32 | 
            +
                "transformer.encoder.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 33 | 
            +
                "transformer.encoder.layers.11.self_attention.dense.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 34 | 
            +
                "transformer.encoder.layers.11.self_attention.query_key_value.bias": "pytorch_model-00003-of-00007.bin",
         | 
| 35 | 
            +
                "transformer.encoder.layers.11.self_attention.query_key_value.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 36 | 
            +
                "transformer.encoder.layers.12.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 37 | 
            +
                "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 38 | 
            +
                "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 39 | 
            +
                "transformer.encoder.layers.12.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 40 | 
            +
                "transformer.encoder.layers.12.self_attention.dense.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 41 | 
            +
                "transformer.encoder.layers.12.self_attention.query_key_value.bias": "pytorch_model-00003-of-00007.bin",
         | 
| 42 | 
            +
                "transformer.encoder.layers.12.self_attention.query_key_value.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 43 | 
            +
                "transformer.encoder.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 44 | 
            +
                "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 45 | 
            +
                "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 46 | 
            +
                "transformer.encoder.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 47 | 
            +
                "transformer.encoder.layers.13.self_attention.dense.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 48 | 
            +
                "transformer.encoder.layers.13.self_attention.query_key_value.bias": "pytorch_model-00004-of-00007.bin",
         | 
| 49 | 
            +
                "transformer.encoder.layers.13.self_attention.query_key_value.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 50 | 
            +
                "transformer.encoder.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 51 | 
            +
                "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 52 | 
            +
                "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 53 | 
            +
                "transformer.encoder.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 54 | 
            +
                "transformer.encoder.layers.14.self_attention.dense.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 55 | 
            +
                "transformer.encoder.layers.14.self_attention.query_key_value.bias": "pytorch_model-00004-of-00007.bin",
         | 
| 56 | 
            +
                "transformer.encoder.layers.14.self_attention.query_key_value.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 57 | 
            +
                "transformer.encoder.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 58 | 
            +
                "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 59 | 
            +
                "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 60 | 
            +
                "transformer.encoder.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 61 | 
            +
                "transformer.encoder.layers.15.self_attention.dense.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 62 | 
            +
                "transformer.encoder.layers.15.self_attention.query_key_value.bias": "pytorch_model-00004-of-00007.bin",
         | 
| 63 | 
            +
                "transformer.encoder.layers.15.self_attention.query_key_value.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 64 | 
            +
                "transformer.encoder.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 65 | 
            +
                "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 66 | 
            +
                "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 67 | 
            +
                "transformer.encoder.layers.16.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 68 | 
            +
                "transformer.encoder.layers.16.self_attention.dense.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 69 | 
            +
                "transformer.encoder.layers.16.self_attention.query_key_value.bias": "pytorch_model-00004-of-00007.bin",
         | 
| 70 | 
            +
                "transformer.encoder.layers.16.self_attention.query_key_value.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 71 | 
            +
                "transformer.encoder.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 72 | 
            +
                "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 73 | 
            +
                "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 74 | 
            +
                "transformer.encoder.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 75 | 
            +
                "transformer.encoder.layers.17.self_attention.dense.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 76 | 
            +
                "transformer.encoder.layers.17.self_attention.query_key_value.bias": "pytorch_model-00004-of-00007.bin",
         | 
| 77 | 
            +
                "transformer.encoder.layers.17.self_attention.query_key_value.weight": "pytorch_model-00004-of-00007.bin",
         | 
| 78 | 
            +
                "transformer.encoder.layers.18.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 79 | 
            +
                "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 80 | 
            +
                "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 81 | 
            +
                "transformer.encoder.layers.18.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 82 | 
            +
                "transformer.encoder.layers.18.self_attention.dense.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 83 | 
            +
                "transformer.encoder.layers.18.self_attention.query_key_value.bias": "pytorch_model-00005-of-00007.bin",
         | 
| 84 | 
            +
                "transformer.encoder.layers.18.self_attention.query_key_value.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 85 | 
            +
                "transformer.encoder.layers.19.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 86 | 
            +
                "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 87 | 
            +
                "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 88 | 
            +
                "transformer.encoder.layers.19.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 89 | 
            +
                "transformer.encoder.layers.19.self_attention.dense.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 90 | 
            +
                "transformer.encoder.layers.19.self_attention.query_key_value.bias": "pytorch_model-00005-of-00007.bin",
         | 
| 91 | 
            +
                "transformer.encoder.layers.19.self_attention.query_key_value.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 92 | 
            +
                "transformer.encoder.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 93 | 
            +
                "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 94 | 
            +
                "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 95 | 
            +
                "transformer.encoder.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 96 | 
            +
                "transformer.encoder.layers.2.self_attention.dense.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 97 | 
            +
                "transformer.encoder.layers.2.self_attention.query_key_value.bias": "pytorch_model-00001-of-00007.bin",
         | 
| 98 | 
            +
                "transformer.encoder.layers.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 99 | 
            +
                "transformer.encoder.layers.20.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 100 | 
            +
                "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 101 | 
            +
                "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 102 | 
            +
                "transformer.encoder.layers.20.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 103 | 
            +
                "transformer.encoder.layers.20.self_attention.dense.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 104 | 
            +
                "transformer.encoder.layers.20.self_attention.query_key_value.bias": "pytorch_model-00005-of-00007.bin",
         | 
| 105 | 
            +
                "transformer.encoder.layers.20.self_attention.query_key_value.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 106 | 
            +
                "transformer.encoder.layers.21.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 107 | 
            +
                "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 108 | 
            +
                "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 109 | 
            +
                "transformer.encoder.layers.21.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 110 | 
            +
                "transformer.encoder.layers.21.self_attention.dense.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 111 | 
            +
                "transformer.encoder.layers.21.self_attention.query_key_value.bias": "pytorch_model-00005-of-00007.bin",
         | 
| 112 | 
            +
                "transformer.encoder.layers.21.self_attention.query_key_value.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 113 | 
            +
                "transformer.encoder.layers.22.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
         | 
| 114 | 
            +
                "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 115 | 
            +
                "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 116 | 
            +
                "transformer.encoder.layers.22.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 117 | 
            +
                "transformer.encoder.layers.22.self_attention.dense.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 118 | 
            +
                "transformer.encoder.layers.22.self_attention.query_key_value.bias": "pytorch_model-00006-of-00007.bin",
         | 
| 119 | 
            +
                "transformer.encoder.layers.22.self_attention.query_key_value.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 120 | 
            +
                "transformer.encoder.layers.23.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 121 | 
            +
                "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 122 | 
            +
                "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 123 | 
            +
                "transformer.encoder.layers.23.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 124 | 
            +
                "transformer.encoder.layers.23.self_attention.dense.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 125 | 
            +
                "transformer.encoder.layers.23.self_attention.query_key_value.bias": "pytorch_model-00006-of-00007.bin",
         | 
| 126 | 
            +
                "transformer.encoder.layers.23.self_attention.query_key_value.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 127 | 
            +
                "transformer.encoder.layers.24.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 128 | 
            +
                "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 129 | 
            +
                "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 130 | 
            +
                "transformer.encoder.layers.24.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 131 | 
            +
                "transformer.encoder.layers.24.self_attention.dense.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 132 | 
            +
                "transformer.encoder.layers.24.self_attention.query_key_value.bias": "pytorch_model-00006-of-00007.bin",
         | 
| 133 | 
            +
                "transformer.encoder.layers.24.self_attention.query_key_value.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 134 | 
            +
                "transformer.encoder.layers.25.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 135 | 
            +
                "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 136 | 
            +
                "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 137 | 
            +
                "transformer.encoder.layers.25.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 138 | 
            +
                "transformer.encoder.layers.25.self_attention.dense.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 139 | 
            +
                "transformer.encoder.layers.25.self_attention.query_key_value.bias": "pytorch_model-00006-of-00007.bin",
         | 
| 140 | 
            +
                "transformer.encoder.layers.25.self_attention.query_key_value.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 141 | 
            +
                "transformer.encoder.layers.26.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 142 | 
            +
                "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 143 | 
            +
                "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 144 | 
            +
                "transformer.encoder.layers.26.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 145 | 
            +
                "transformer.encoder.layers.26.self_attention.dense.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 146 | 
            +
                "transformer.encoder.layers.26.self_attention.query_key_value.bias": "pytorch_model-00006-of-00007.bin",
         | 
| 147 | 
            +
                "transformer.encoder.layers.26.self_attention.query_key_value.weight": "pytorch_model-00006-of-00007.bin",
         | 
| 148 | 
            +
                "transformer.encoder.layers.27.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 149 | 
            +
                "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 150 | 
            +
                "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 151 | 
            +
                "transformer.encoder.layers.27.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 152 | 
            +
                "transformer.encoder.layers.27.self_attention.dense.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 153 | 
            +
                "transformer.encoder.layers.27.self_attention.query_key_value.bias": "pytorch_model-00007-of-00007.bin",
         | 
| 154 | 
            +
                "transformer.encoder.layers.27.self_attention.query_key_value.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 155 | 
            +
                "transformer.encoder.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 156 | 
            +
                "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 157 | 
            +
                "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 158 | 
            +
                "transformer.encoder.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 159 | 
            +
                "transformer.encoder.layers.3.self_attention.dense.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 160 | 
            +
                "transformer.encoder.layers.3.self_attention.query_key_value.bias": "pytorch_model-00001-of-00007.bin",
         | 
| 161 | 
            +
                "transformer.encoder.layers.3.self_attention.query_key_value.weight": "pytorch_model-00001-of-00007.bin",
         | 
| 162 | 
            +
                "transformer.encoder.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 163 | 
            +
                "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 164 | 
            +
                "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 165 | 
            +
                "transformer.encoder.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 166 | 
            +
                "transformer.encoder.layers.4.self_attention.dense.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 167 | 
            +
                "transformer.encoder.layers.4.self_attention.query_key_value.bias": "pytorch_model-00002-of-00007.bin",
         | 
| 168 | 
            +
                "transformer.encoder.layers.4.self_attention.query_key_value.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 169 | 
            +
                "transformer.encoder.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 170 | 
            +
                "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 171 | 
            +
                "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 172 | 
            +
                "transformer.encoder.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 173 | 
            +
                "transformer.encoder.layers.5.self_attention.dense.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 174 | 
            +
                "transformer.encoder.layers.5.self_attention.query_key_value.bias": "pytorch_model-00002-of-00007.bin",
         | 
| 175 | 
            +
                "transformer.encoder.layers.5.self_attention.query_key_value.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 176 | 
            +
                "transformer.encoder.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 177 | 
            +
                "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 178 | 
            +
                "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 179 | 
            +
                "transformer.encoder.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 180 | 
            +
                "transformer.encoder.layers.6.self_attention.dense.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 181 | 
            +
                "transformer.encoder.layers.6.self_attention.query_key_value.bias": "pytorch_model-00002-of-00007.bin",
         | 
| 182 | 
            +
                "transformer.encoder.layers.6.self_attention.query_key_value.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 183 | 
            +
                "transformer.encoder.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 184 | 
            +
                "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 185 | 
            +
                "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 186 | 
            +
                "transformer.encoder.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 187 | 
            +
                "transformer.encoder.layers.7.self_attention.dense.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 188 | 
            +
                "transformer.encoder.layers.7.self_attention.query_key_value.bias": "pytorch_model-00002-of-00007.bin",
         | 
| 189 | 
            +
                "transformer.encoder.layers.7.self_attention.query_key_value.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 190 | 
            +
                "transformer.encoder.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
         | 
| 191 | 
            +
                "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 192 | 
            +
                "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 193 | 
            +
                "transformer.encoder.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 194 | 
            +
                "transformer.encoder.layers.8.self_attention.dense.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 195 | 
            +
                "transformer.encoder.layers.8.self_attention.query_key_value.bias": "pytorch_model-00003-of-00007.bin",
         | 
| 196 | 
            +
                "transformer.encoder.layers.8.self_attention.query_key_value.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 197 | 
            +
                "transformer.encoder.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 198 | 
            +
                "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 199 | 
            +
                "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 200 | 
            +
                "transformer.encoder.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 201 | 
            +
                "transformer.encoder.layers.9.self_attention.dense.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 202 | 
            +
                "transformer.encoder.layers.9.self_attention.query_key_value.bias": "pytorch_model-00003-of-00007.bin",
         | 
| 203 | 
            +
                "transformer.encoder.layers.9.self_attention.query_key_value.weight": "pytorch_model-00003-of-00007.bin",
         | 
| 204 | 
            +
                "transformer.output_layer.weight": "pytorch_model-00007-of-00007.bin",
         | 
| 205 | 
            +
                "transformer.rotary_pos_emb.inv_freq": "pytorch_model-00001-of-00007.bin"
         | 
| 206 | 
            +
              }
         | 
| 207 | 
            +
            }
         | 
    	
        quantization.py
    ADDED
    
    | @@ -0,0 +1,188 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from torch.nn import Linear
         | 
| 2 | 
            +
            from torch.nn.parameter import Parameter
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import bz2
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import base64
         | 
| 7 | 
            +
            import ctypes
         | 
| 8 | 
            +
            from transformers.utils import logging
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from typing import List
         | 
| 11 | 
            +
            from functools import partial
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            try:
         | 
| 16 | 
            +
                from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                class Kernel:
         | 
| 19 | 
            +
                    def __init__(self, code: bytes, function_names: List[str]):
         | 
| 20 | 
            +
                        self.code = code
         | 
| 21 | 
            +
                        self._function_names = function_names
         | 
| 22 | 
            +
                        self._cmodule = LazyKernelCModule(self.code)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                        for name in self._function_names:
         | 
| 25 | 
            +
                            setattr(self, name, KernelFunction(self._cmodule, name))
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                kernels = Kernel(
         | 
| 30 | 
            +
                    bz2.decompress(base64.b64decode(quantization_code)),
         | 
| 31 | 
            +
                    [
         | 
| 32 | 
            +
                        "int4WeightCompression",
         | 
| 33 | 
            +
                        "int4WeightExtractionFloat",
         | 
| 34 | 
            +
                        "int4WeightExtractionHalf",
         | 
| 35 | 
            +
                        "int8WeightExtractionFloat",
         | 
| 36 | 
            +
                        "int8WeightExtractionHalf",
         | 
| 37 | 
            +
                    ],
         | 
| 38 | 
            +
                )
         | 
| 39 | 
            +
            except Exception as exception:
         | 
| 40 | 
            +
                kernels = None
         | 
| 41 | 
            +
                logger.warning("Failed to load cpm_kernels:" + str(exception))
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            class W8A16Linear(torch.autograd.Function):
         | 
| 45 | 
            +
                @staticmethod
         | 
| 46 | 
            +
                def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
         | 
| 47 | 
            +
                    ctx.inp_shape = inp.size()
         | 
| 48 | 
            +
                    ctx.weight_bit_width = weight_bit_width
         | 
| 49 | 
            +
                    out_features = quant_w.size(0)
         | 
| 50 | 
            +
                    inp = inp.contiguous().view(-1, inp.size(-1))
         | 
| 51 | 
            +
                    weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
         | 
| 52 | 
            +
                    ctx.weight_shape = weight.size()
         | 
| 53 | 
            +
                    output = inp.mm(weight.t())
         | 
| 54 | 
            +
                    ctx.save_for_backward(inp, quant_w, scale_w)
         | 
| 55 | 
            +
                    return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                @staticmethod
         | 
| 58 | 
            +
                def backward(ctx, grad_output: torch.Tensor):
         | 
| 59 | 
            +
                    inp, quant_w, scale_w = ctx.saved_tensors
         | 
| 60 | 
            +
                    weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
         | 
| 61 | 
            +
                    grad_output = grad_output.contiguous().view(-1, weight.size(0))
         | 
| 62 | 
            +
                    grad_input = grad_output.mm(weight)
         | 
| 63 | 
            +
                    grad_weight = grad_output.t().mm(inp)
         | 
| 64 | 
            +
                    return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
         | 
| 65 | 
            +
             | 
| 66 | 
            +
             | 
| 67 | 
            +
            def compress_int4_weight(weight: torch.Tensor):  # (n, m)
         | 
| 68 | 
            +
                with torch.cuda.device(weight.device):
         | 
| 69 | 
            +
                    n, m = weight.size(0), weight.size(1)
         | 
| 70 | 
            +
                    assert m % 2 == 0
         | 
| 71 | 
            +
                    m = m // 2
         | 
| 72 | 
            +
                    out = torch.empty(n, m, dtype=torch.int8, device="cuda")
         | 
| 73 | 
            +
                    stream = torch.cuda.current_stream()
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    gridDim = (n, 1, 1)
         | 
| 76 | 
            +
                    blockDim = (min(round_up(m, 32), 1024), 1, 1)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    kernels.int4WeightCompression(
         | 
| 79 | 
            +
                        gridDim,
         | 
| 80 | 
            +
                        blockDim,
         | 
| 81 | 
            +
                        0,
         | 
| 82 | 
            +
                        stream,
         | 
| 83 | 
            +
                        [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
                    return out
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
         | 
| 89 | 
            +
                assert scale_list.dtype in [torch.half, torch.bfloat16]
         | 
| 90 | 
            +
                assert weight.dtype in [torch.int8]
         | 
| 91 | 
            +
                if source_bit_width == 8:
         | 
| 92 | 
            +
                    return weight.to(scale_list.dtype) * scale_list[:, None]
         | 
| 93 | 
            +
                elif source_bit_width == 4:
         | 
| 94 | 
            +
                    func = (
         | 
| 95 | 
            +
                        kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
         | 
| 96 | 
            +
                    )
         | 
| 97 | 
            +
                else:
         | 
| 98 | 
            +
                    assert False, "Unsupported bit-width"
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                with torch.cuda.device(weight.device):
         | 
| 101 | 
            +
                    n, m = weight.size(0), weight.size(1)
         | 
| 102 | 
            +
                    out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
         | 
| 103 | 
            +
                    stream = torch.cuda.current_stream()
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    gridDim = (n, 1, 1)
         | 
| 106 | 
            +
                    blockDim = (min(round_up(m, 32), 1024), 1, 1)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    func(
         | 
| 109 | 
            +
                        gridDim,
         | 
| 110 | 
            +
                        blockDim,
         | 
| 111 | 
            +
                        0,
         | 
| 112 | 
            +
                        stream,
         | 
| 113 | 
            +
                        [
         | 
| 114 | 
            +
                            ctypes.c_void_p(weight.data_ptr()),
         | 
| 115 | 
            +
                            ctypes.c_void_p(scale_list.data_ptr()),
         | 
| 116 | 
            +
                            ctypes.c_void_p(out.data_ptr()),
         | 
| 117 | 
            +
                            ctypes.c_int32(n),
         | 
| 118 | 
            +
                            ctypes.c_int32(m),
         | 
| 119 | 
            +
                        ],
         | 
| 120 | 
            +
                    )
         | 
| 121 | 
            +
                    return out
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            class QuantizedLinear(torch.nn.Module):
         | 
| 125 | 
            +
                def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
         | 
| 126 | 
            +
                             **kwargs):
         | 
| 127 | 
            +
                    super().__init__()
         | 
| 128 | 
            +
                    self.weight_bit_width = weight_bit_width
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    shape = weight.shape
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    if weight is None or empty_init:
         | 
| 133 | 
            +
                        self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
         | 
| 134 | 
            +
                        self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
         | 
| 135 | 
            +
                    else:
         | 
| 136 | 
            +
                        self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
         | 
| 137 | 
            +
                        self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
         | 
| 138 | 
            +
                        if weight_bit_width == 4:
         | 
| 139 | 
            +
                            self.weight = compress_int4_weight(self.weight)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.weight = Parameter(self.weight.to(device), requires_grad=False)
         | 
| 142 | 
            +
                    self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
         | 
| 143 | 
            +
                    self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                def forward(self, input):
         | 
| 146 | 
            +
                    output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
         | 
| 147 | 
            +
                    if self.bias is not None:
         | 
| 148 | 
            +
                        output = output + self.bias
         | 
| 149 | 
            +
                    return output
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
            def quantize(model, weight_bit_width, empty_init=False, device=None):
         | 
| 153 | 
            +
                """Replace fp16 linear with quantized linear"""
         | 
| 154 | 
            +
                for layer in model.layers:
         | 
| 155 | 
            +
                    layer.self_attention.query_key_value = QuantizedLinear(
         | 
| 156 | 
            +
                        weight_bit_width=weight_bit_width,
         | 
| 157 | 
            +
                        weight=layer.self_attention.query_key_value.weight.to(torch.cuda.current_device()),
         | 
| 158 | 
            +
                        bias=layer.self_attention.query_key_value.bias,
         | 
| 159 | 
            +
                        dtype=layer.self_attention.query_key_value.weight.dtype,
         | 
| 160 | 
            +
                        device=layer.self_attention.query_key_value.weight.device if device is None else device,
         | 
| 161 | 
            +
                        empty_init=empty_init
         | 
| 162 | 
            +
                    )
         | 
| 163 | 
            +
                    layer.self_attention.dense = QuantizedLinear(
         | 
| 164 | 
            +
                        weight_bit_width=weight_bit_width,
         | 
| 165 | 
            +
                        weight=layer.self_attention.dense.weight.to(torch.cuda.current_device()),
         | 
| 166 | 
            +
                        bias=layer.self_attention.dense.bias,
         | 
| 167 | 
            +
                        dtype=layer.self_attention.dense.weight.dtype,
         | 
| 168 | 
            +
                        device=layer.self_attention.dense.weight.device if device is None else device,
         | 
| 169 | 
            +
                        empty_init=empty_init
         | 
| 170 | 
            +
                    )
         | 
| 171 | 
            +
                    layer.mlp.dense_h_to_4h = QuantizedLinear(
         | 
| 172 | 
            +
                        weight_bit_width=weight_bit_width,
         | 
| 173 | 
            +
                        weight=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
         | 
| 174 | 
            +
                        bias=layer.mlp.dense_h_to_4h.bias,
         | 
| 175 | 
            +
                        dtype=layer.mlp.dense_h_to_4h.weight.dtype,
         | 
| 176 | 
            +
                        device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
         | 
| 177 | 
            +
                        empty_init=empty_init
         | 
| 178 | 
            +
                    )
         | 
| 179 | 
            +
                    layer.mlp.dense_4h_to_h = QuantizedLinear(
         | 
| 180 | 
            +
                        weight_bit_width=weight_bit_width,
         | 
| 181 | 
            +
                        weight=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
         | 
| 182 | 
            +
                        bias=layer.mlp.dense_4h_to_h.bias,
         | 
| 183 | 
            +
                        dtype=layer.mlp.dense_4h_to_h.weight.dtype,
         | 
| 184 | 
            +
                        device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
         | 
| 185 | 
            +
                        empty_init=empty_init
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                return model
         | 
    	
        tokenization_chatglm.py
    ADDED
    
    | @@ -0,0 +1,257 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from typing import List, Optional, Union, Dict
         | 
| 4 | 
            +
            from sentencepiece import SentencePieceProcessor
         | 
| 5 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 6 | 
            +
            from transformers.utils import logging, PaddingStrategy
         | 
| 7 | 
            +
            from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class SPTokenizer:
         | 
| 11 | 
            +
                def __init__(self, model_path: str):
         | 
| 12 | 
            +
                    # reload tokenizer
         | 
| 13 | 
            +
                    assert os.path.isfile(model_path), model_path
         | 
| 14 | 
            +
                    self.sp_model = SentencePieceProcessor(model_file=model_path)
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                    # BOS / EOS token IDs
         | 
| 17 | 
            +
                    self.n_words: int = self.sp_model.vocab_size()
         | 
| 18 | 
            +
                    self.bos_id: int = self.sp_model.bos_id()
         | 
| 19 | 
            +
                    self.eos_id: int = self.sp_model.eos_id()
         | 
| 20 | 
            +
                    self.pad_id: int = self.sp_model.unk_id()
         | 
| 21 | 
            +
                    assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                    special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
         | 
| 24 | 
            +
                    self.special_tokens = {}
         | 
| 25 | 
            +
                    self.index_special_tokens = {}
         | 
| 26 | 
            +
                    for token in special_tokens:
         | 
| 27 | 
            +
                        self.special_tokens[token] = self.n_words
         | 
| 28 | 
            +
                        self.index_special_tokens[self.n_words] = token
         | 
| 29 | 
            +
                        self.n_words += 1
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def tokenize(self, s: str):
         | 
| 32 | 
            +
                    return self.sp_model.EncodeAsPieces(s)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
         | 
| 35 | 
            +
                    assert type(s) is str
         | 
| 36 | 
            +
                    t = self.sp_model.encode(s)
         | 
| 37 | 
            +
                    if bos:
         | 
| 38 | 
            +
                        t = [self.bos_id] + t
         | 
| 39 | 
            +
                    if eos:
         | 
| 40 | 
            +
                        t = t + [self.eos_id]
         | 
| 41 | 
            +
                    return t
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def decode(self, t: List[int]) -> str:
         | 
| 44 | 
            +
                    return self.sp_model.decode(t)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def decode_tokens(self, tokens: List[str]) -> str:
         | 
| 47 | 
            +
                    text = self.sp_model.DecodePieces(tokens)
         | 
| 48 | 
            +
                    return text
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def convert_token_to_id(self, token):
         | 
| 51 | 
            +
                    """ Converts a token (str) in an id using the vocab. """
         | 
| 52 | 
            +
                    if token in self.special_tokens:
         | 
| 53 | 
            +
                        return self.special_tokens[token]
         | 
| 54 | 
            +
                    return self.sp_model.PieceToId(token)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def convert_id_to_token(self, index):
         | 
| 57 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 58 | 
            +
                    if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
         | 
| 59 | 
            +
                        return ""
         | 
| 60 | 
            +
                    return self.sp_model.IdToPiece(index)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            class ChatGLMTokenizer(PreTrainedTokenizer):
         | 
| 64 | 
            +
                vocab_files_names = {"vocab_file": "tokenizer.model"}
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                model_input_names = ["input_ids", "attention_mask", "position_ids"]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
         | 
| 69 | 
            +
                    super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
         | 
| 70 | 
            +
                    self.name = "GLMTokenizer"
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    self.vocab_file = vocab_file
         | 
| 73 | 
            +
                    self.tokenizer = SPTokenizer(vocab_file)
         | 
| 74 | 
            +
                    self.special_tokens = {
         | 
| 75 | 
            +
                        "<bos>": self.tokenizer.bos_id,
         | 
| 76 | 
            +
                        "<eos>": self.tokenizer.eos_id,
         | 
| 77 | 
            +
                        "<pad>": self.tokenizer.pad_id
         | 
| 78 | 
            +
                    }
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def get_command(self, token):
         | 
| 81 | 
            +
                    if token in self.special_tokens:
         | 
| 82 | 
            +
                        return self.special_tokens[token]
         | 
| 83 | 
            +
                    assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
         | 
| 84 | 
            +
                    return self.tokenizer.special_tokens[token]
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                @property
         | 
| 87 | 
            +
                def unk_token(self) -> str:
         | 
| 88 | 
            +
                    return "<unk>"
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                @property
         | 
| 91 | 
            +
                def pad_token(self) -> str:
         | 
| 92 | 
            +
                    return "<unk>"
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                @property
         | 
| 95 | 
            +
                def pad_token_id(self):
         | 
| 96 | 
            +
                    return self.get_command("<pad>")
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                @property
         | 
| 99 | 
            +
                def eos_token(self) -> str:
         | 
| 100 | 
            +
                    return "</s>"
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                @property
         | 
| 103 | 
            +
                def eos_token_id(self):
         | 
| 104 | 
            +
                    return self.get_command("<eos>")
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                @property
         | 
| 107 | 
            +
                def vocab_size(self):
         | 
| 108 | 
            +
                    return self.tokenizer.n_words
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def get_vocab(self):
         | 
| 111 | 
            +
                    """ Returns vocab as a dict """
         | 
| 112 | 
            +
                    vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
         | 
| 113 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 114 | 
            +
                    return vocab
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def _tokenize(self, text, **kwargs):
         | 
| 117 | 
            +
                    return self.tokenizer.tokenize(text)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 120 | 
            +
                    """ Converts a token (str) in an id using the vocab. """
         | 
| 121 | 
            +
                    return self.tokenizer.convert_token_to_id(token)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 124 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 125 | 
            +
                    return self.tokenizer.convert_id_to_token(index)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def convert_tokens_to_string(self, tokens: List[str]) -> str:
         | 
| 128 | 
            +
                    return self.tokenizer.decode_tokens(tokens)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix=None):
         | 
| 131 | 
            +
                    """
         | 
| 132 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    Args:
         | 
| 135 | 
            +
                        save_directory (`str`):
         | 
| 136 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 137 | 
            +
                        filename_prefix (`str`, *optional*):
         | 
| 138 | 
            +
                            An optional prefix to add to the named of the saved files.
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    Returns:
         | 
| 141 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 142 | 
            +
                    """
         | 
| 143 | 
            +
                    if os.path.isdir(save_directory):
         | 
| 144 | 
            +
                        vocab_file = os.path.join(
         | 
| 145 | 
            +
                            save_directory, self.vocab_files_names["vocab_file"]
         | 
| 146 | 
            +
                        )
         | 
| 147 | 
            +
                    else:
         | 
| 148 | 
            +
                        vocab_file = save_directory
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    with open(self.vocab_file, 'rb') as fin:
         | 
| 151 | 
            +
                        proto_str = fin.read()
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    with open(vocab_file, "wb") as writer:
         | 
| 154 | 
            +
                        writer.write(proto_str)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    return (vocab_file,)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                def get_prefix_tokens(self):
         | 
| 159 | 
            +
                    prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
         | 
| 160 | 
            +
                    return prefix_tokens
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def build_prompt(self, query, history=None):
         | 
| 163 | 
            +
                    if history is None:
         | 
| 164 | 
            +
                        history = []
         | 
| 165 | 
            +
                    prompt = ""
         | 
| 166 | 
            +
                    for i, (old_query, response) in enumerate(history):
         | 
| 167 | 
            +
                        prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
         | 
| 168 | 
            +
                    prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
         | 
| 169 | 
            +
                    return prompt
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                def build_inputs_with_special_tokens(
         | 
| 172 | 
            +
                        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 173 | 
            +
                ) -> List[int]:
         | 
| 174 | 
            +
                    """
         | 
| 175 | 
            +
                    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
         | 
| 176 | 
            +
                    adding special tokens. A BERT sequence has the following format:
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    - single sequence: `[CLS] X [SEP]`
         | 
| 179 | 
            +
                    - pair of sequences: `[CLS] A [SEP] B [SEP]`
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    Args:
         | 
| 182 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 183 | 
            +
                            List of IDs to which the special tokens will be added.
         | 
| 184 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 185 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    Returns:
         | 
| 188 | 
            +
                        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
         | 
| 189 | 
            +
                    """
         | 
| 190 | 
            +
                    prefix_tokens = self.get_prefix_tokens()
         | 
| 191 | 
            +
                    token_ids_0 = prefix_tokens + token_ids_0
         | 
| 192 | 
            +
                    if token_ids_1 is not None:
         | 
| 193 | 
            +
                        token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
         | 
| 194 | 
            +
                    return token_ids_0
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                def _pad(
         | 
| 197 | 
            +
                        self,
         | 
| 198 | 
            +
                        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
         | 
| 199 | 
            +
                        max_length: Optional[int] = None,
         | 
| 200 | 
            +
                        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
         | 
| 201 | 
            +
                        pad_to_multiple_of: Optional[int] = None,
         | 
| 202 | 
            +
                        return_attention_mask: Optional[bool] = None,
         | 
| 203 | 
            +
                ) -> dict:
         | 
| 204 | 
            +
                    """
         | 
| 205 | 
            +
                    Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    Args:
         | 
| 208 | 
            +
                        encoded_inputs:
         | 
| 209 | 
            +
                            Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
         | 
| 210 | 
            +
                        max_length: maximum length of the returned list and optionally padding length (see below).
         | 
| 211 | 
            +
                            Will truncate by taking into account the special tokens.
         | 
| 212 | 
            +
                        padding_strategy: PaddingStrategy to use for padding.
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                            - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
         | 
| 215 | 
            +
                            - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
         | 
| 216 | 
            +
                            - PaddingStrategy.DO_NOT_PAD: Do not pad
         | 
| 217 | 
            +
                            The tokenizer padding sides are defined in self.padding_side:
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                                - 'left': pads on the left of the sequences
         | 
| 220 | 
            +
                                - 'right': pads on the right of the sequences
         | 
| 221 | 
            +
                        pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
         | 
| 222 | 
            +
                            This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
         | 
| 223 | 
            +
                            `>= 7.5` (Volta).
         | 
| 224 | 
            +
                        return_attention_mask:
         | 
| 225 | 
            +
                            (optional) Set to False to avoid returning attention mask (default: set to model specifics)
         | 
| 226 | 
            +
                    """
         | 
| 227 | 
            +
                    # Load from model defaults
         | 
| 228 | 
            +
                    assert self.padding_side == "left"
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    required_input = encoded_inputs[self.model_input_names[0]]
         | 
| 231 | 
            +
                    seq_length = len(required_input)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    if padding_strategy == PaddingStrategy.LONGEST:
         | 
| 234 | 
            +
                        max_length = len(required_input)
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
         | 
| 237 | 
            +
                        max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    # Initialize attention mask if not present.
         | 
| 242 | 
            +
                    if "attention_mask" not in encoded_inputs:
         | 
| 243 | 
            +
                        encoded_inputs["attention_mask"] = [1] * seq_length
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    if "position_ids" not in encoded_inputs:
         | 
| 246 | 
            +
                        encoded_inputs["position_ids"] = list(range(seq_length))
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    if needs_to_be_padded:
         | 
| 249 | 
            +
                        difference = max_length - len(required_input)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                        if "attention_mask" in encoded_inputs:
         | 
| 252 | 
            +
                            encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
         | 
| 253 | 
            +
                        if "position_ids" in encoded_inputs:
         | 
| 254 | 
            +
                            encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
         | 
| 255 | 
            +
                        encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    return encoded_inputs
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
         | 
| 3 | 
            +
            size 1018370
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "name_or_path": "THUDM/chatglm2-6b",
         | 
| 3 | 
            +
              "remove_space": false,
         | 
| 4 | 
            +
              "do_lower_case": false,
         | 
| 5 | 
            +
              "tokenizer_class": "ChatGLMTokenizer",
         | 
| 6 | 
            +
              "auto_map": {
         | 
| 7 | 
            +
                "AutoTokenizer": [
         | 
| 8 | 
            +
                  "tokenization_chatglm.ChatGLMTokenizer",
         | 
| 9 | 
            +
                  null
         | 
| 10 | 
            +
                  ]
         | 
| 11 | 
            +
              }
         | 
| 12 | 
            +
            }
         |