Update ultravox_model.py
Browse files- ultravox_model.py +166 -59
ultravox_model.py
CHANGED
|
@@ -2,6 +2,7 @@ import logging
|
|
| 2 |
import re
|
| 3 |
from typing import Any, Dict, Generator, Optional, Set, Tuple, TypeVar, Union
|
| 4 |
|
|
|
|
| 5 |
import peft
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
|
@@ -19,6 +20,15 @@ from .ultravox_config import LossConfig
|
|
| 19 |
from .ultravox_config import LossFunction
|
| 20 |
from .ultravox_config import UltravoxConfig
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
| 24 |
"""
|
|
@@ -69,44 +79,29 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 69 |
self.loss_config = LossConfig()
|
| 70 |
self.post_init()
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
@classmethod
|
| 73 |
-
def from_pretrained(cls,
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return model
|
| 77 |
|
| 78 |
-
def _load_child_model_weights(self, *args, **kwargs) -> "UltravoxModel":
|
| 79 |
-
if "torch_dtype" in kwargs:
|
| 80 |
-
self.config.torch_dtype = kwargs.pop("torch_dtype")
|
| 81 |
-
|
| 82 |
-
kwargs.pop("config", None)
|
| 83 |
-
|
| 84 |
-
if (
|
| 85 |
-
self.config.text_model_id is not None
|
| 86 |
-
and self.language_model.device.type == "meta"
|
| 87 |
-
):
|
| 88 |
-
# Load the language model weights
|
| 89 |
-
self.language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 90 |
-
self.config.text_model_id,
|
| 91 |
-
torch_dtype=self.config.torch_dtype,
|
| 92 |
-
*args,
|
| 93 |
-
**kwargs,
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
if (
|
| 97 |
-
self.config.audio_model_id is not None
|
| 98 |
-
and self.audio_tower.device.type == "meta"
|
| 99 |
-
):
|
| 100 |
-
# Load the audio tower weights
|
| 101 |
-
self.audio_tower = transformers.AutoModel.from_pretrained(
|
| 102 |
-
self.config.audio_model_id,
|
| 103 |
-
torch_dtype=self.config.torch_dtype,
|
| 104 |
-
*args,
|
| 105 |
-
**kwargs,
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
return self
|
| 109 |
-
|
| 110 |
def get_input_embeddings(self):
|
| 111 |
return self.language_model.get_input_embeddings()
|
| 112 |
|
|
@@ -153,21 +148,29 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 153 |
self.vocab_size = model_embeds.num_embeddings
|
| 154 |
return model_embeds
|
| 155 |
|
| 156 |
-
def _get_prediction_mask(
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
For each label position, we want the position before it since that's where
|
| 160 |
the model makes the prediction for that label.
|
| 161 |
|
|
|
|
|
|
|
|
|
|
| 162 |
Args:
|
| 163 |
labels: Tensor of shape (B, T) where B is batch size and T is sequence length,
|
| 164 |
with -100 for masked positions and token ids for label positions
|
| 165 |
|
| 166 |
Returns:
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
"""
|
| 169 |
if labels is None:
|
| 170 |
raise ValueError("labels must be provided")
|
|
|
|
| 171 |
# Shift the label mask right by 1 along the sequence dimension
|
| 172 |
# This gives us positions where we make predictions for the next token
|
| 173 |
label_mask = labels != -100
|
|
@@ -175,7 +178,19 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 175 |
pred_mask[:, :-1] = label_mask[
|
| 176 |
:, 1:
|
| 177 |
] # shift right by 1 along sequence dimension
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
def _compute_kl_loss(
|
| 181 |
self,
|
|
@@ -198,21 +213,38 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 198 |
past_key_values=past_key_values,
|
| 199 |
**kwargs,
|
| 200 |
)
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
kl_loss = F.kl_div(
|
| 203 |
F.log_softmax(
|
| 204 |
-
lm_output.logits[self.
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
dim=-1,
|
| 207 |
),
|
| 208 |
F.softmax(
|
| 209 |
-
alt_lm_output.logits[self.
|
| 210 |
-
/ self.loss_config.kl_temperature,
|
| 211 |
dim=-1,
|
| 212 |
),
|
| 213 |
reduction="batchmean",
|
| 214 |
)
|
| 215 |
-
|
|
|
|
| 216 |
|
| 217 |
def _audio_iter(
|
| 218 |
self, audio_batch_size: torch.Tensor
|
|
@@ -380,18 +412,27 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 380 |
cls, config: UltravoxConfig
|
| 381 |
) -> "UltravoxProjector":
|
| 382 |
projector = UltravoxProjector(config)
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
| 384 |
return projector
|
| 385 |
|
| 386 |
@classmethod
|
| 387 |
def _create_audio_tower(
|
| 388 |
cls, config: UltravoxConfig
|
| 389 |
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
audio_tower.init_latency_mask(
|
| 396 |
config.audio_latency_block_size, dtype=config.torch_dtype
|
| 397 |
)
|
|
@@ -400,7 +441,27 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 400 |
None,
|
| 401 |
0,
|
| 402 |
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
| 403 |
-
audio_tower = transformers.AutoModel.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
if isinstance(
|
| 406 |
audio_tower,
|
|
@@ -418,14 +479,27 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 418 |
def _create_language_model(
|
| 419 |
cls, config: UltravoxConfig
|
| 420 |
) -> transformers.LlamaForCausalLM:
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
language_model = apply_lora(language_model, config.text_model_lora_config)
|
| 431 |
return language_model
|
|
@@ -525,6 +599,39 @@ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
|
| 525 |
)
|
| 526 |
|
| 527 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
# TODO: refactor common parts to a shared module
|
| 529 |
def is_cache_empty(
|
| 530 |
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
|
|
|
|
| 2 |
import re
|
| 3 |
from typing import Any, Dict, Generator, Optional, Set, Tuple, TypeVar, Union
|
| 4 |
|
| 5 |
+
import accelerate
|
| 6 |
import peft
|
| 7 |
import torch
|
| 8 |
import torch.nn as nn
|
|
|
|
| 20 |
from .ultravox_config import LossFunction
|
| 21 |
from .ultravox_config import UltravoxConfig
|
| 22 |
|
| 23 |
+
FROM_PRETRAINED_KWARGS = {}
|
| 24 |
+
SHARED_PRETRAINED_KWARGS = [
|
| 25 |
+
"tp_plan",
|
| 26 |
+
"device_map",
|
| 27 |
+
"torch_dtype",
|
| 28 |
+
"attn_implementation",
|
| 29 |
+
"use_flash_attention_2",
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
|
| 33 |
class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
| 34 |
"""
|
|
|
|
| 79 |
self.loss_config = LossConfig()
|
| 80 |
self.post_init()
|
| 81 |
|
| 82 |
+
def _init_weights(self, module):
|
| 83 |
+
if module is self:
|
| 84 |
+
if self.config.text_model_id is not None:
|
| 85 |
+
self.language_model = self._create_language_model(self.config)
|
| 86 |
+
if self.config.audio_model_id is not None:
|
| 87 |
+
self.audio_tower = self._create_audio_tower(self.config)
|
| 88 |
+
elif module in self.language_model.modules():
|
| 89 |
+
pass
|
| 90 |
+
elif module in self.audio_tower.modules():
|
| 91 |
+
pass
|
| 92 |
+
else:
|
| 93 |
+
super()._init_weights(module)
|
| 94 |
+
|
| 95 |
@classmethod
|
| 96 |
+
def from_pretrained(cls, *args, **kwargs):
|
| 97 |
+
global FROM_PRETRAINED_KWARGS
|
| 98 |
+
FROM_PRETRAINED_KWARGS = {
|
| 99 |
+
k: v for k, v in kwargs.items() if k in SHARED_PRETRAINED_KWARGS
|
| 100 |
+
}
|
| 101 |
+
model = super().from_pretrained(*args, **kwargs)
|
| 102 |
+
FROM_PRETRAINED_KWARGS = {}
|
| 103 |
return model
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def get_input_embeddings(self):
|
| 106 |
return self.language_model.get_input_embeddings()
|
| 107 |
|
|
|
|
| 148 |
self.vocab_size = model_embeds.num_embeddings
|
| 149 |
return model_embeds
|
| 150 |
|
| 151 |
+
def _get_prediction_mask(
|
| 152 |
+
self, labels: Optional[torch.Tensor]
|
| 153 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 154 |
+
"""Get boolean masks for positions where we want to compute KL divergence.
|
| 155 |
|
| 156 |
For each label position, we want the position before it since that's where
|
| 157 |
the model makes the prediction for that label.
|
| 158 |
|
| 159 |
+
Additionally, we want to identify the position right before the EOT token
|
| 160 |
+
(the last token with label != -100).
|
| 161 |
+
|
| 162 |
Args:
|
| 163 |
labels: Tensor of shape (B, T) where B is batch size and T is sequence length,
|
| 164 |
with -100 for masked positions and token ids for label positions
|
| 165 |
|
| 166 |
Returns:
|
| 167 |
+
Tuple containing:
|
| 168 |
+
- pred_mask: Boolean tensor of shape (B, T) that's True for positions where we want to compute KL divergence
|
| 169 |
+
- eot_mask: Boolean tensor of shape (B, T) that's True only for the last prediction position in each sequence
|
| 170 |
"""
|
| 171 |
if labels is None:
|
| 172 |
raise ValueError("labels must be provided")
|
| 173 |
+
|
| 174 |
# Shift the label mask right by 1 along the sequence dimension
|
| 175 |
# This gives us positions where we make predictions for the next token
|
| 176 |
label_mask = labels != -100
|
|
|
|
| 178 |
pred_mask[:, :-1] = label_mask[
|
| 179 |
:, 1:
|
| 180 |
] # shift right by 1 along sequence dimension
|
| 181 |
+
|
| 182 |
+
# Create EOT mask - identify only the last prediction position in each sequence
|
| 183 |
+
eot_mask = torch.zeros_like(pred_mask)
|
| 184 |
+
batch_size = labels.shape[0]
|
| 185 |
+
|
| 186 |
+
for i in range(batch_size):
|
| 187 |
+
# Find positions where we make predictions
|
| 188 |
+
pred_positions = torch.where(pred_mask[i])[0]
|
| 189 |
+
if len(pred_positions) > 0:
|
| 190 |
+
# Only mark the last prediction position
|
| 191 |
+
eot_mask[i, pred_positions[-1]] = True
|
| 192 |
+
|
| 193 |
+
return pred_mask, eot_mask
|
| 194 |
|
| 195 |
def _compute_kl_loss(
|
| 196 |
self,
|
|
|
|
| 213 |
past_key_values=past_key_values,
|
| 214 |
**kwargs,
|
| 215 |
)
|
| 216 |
+
|
| 217 |
+
# Get prediction masks for regular tokens and EOT tokens
|
| 218 |
+
pred_mask, eot_mask = self._get_prediction_mask(labels)
|
| 219 |
+
alt_pred_mask, alt_eot_mask = self._get_prediction_mask(alt_labels)
|
| 220 |
+
|
| 221 |
+
# compute the KL divergence loss between the two models for regular tokens
|
| 222 |
kl_loss = F.kl_div(
|
| 223 |
F.log_softmax(
|
| 224 |
+
lm_output.logits[pred_mask] / self.loss_config.kl_temperature,
|
| 225 |
+
dim=-1,
|
| 226 |
+
),
|
| 227 |
+
F.softmax(
|
| 228 |
+
alt_lm_output.logits[alt_pred_mask] / self.loss_config.kl_temperature,
|
| 229 |
+
dim=-1,
|
| 230 |
+
),
|
| 231 |
+
reduction="batchmean",
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Compute the KL divergence loss for EOT token positions if any exist
|
| 235 |
+
eot_loss = F.kl_div(
|
| 236 |
+
F.log_softmax(
|
| 237 |
+
lm_output.logits[eot_mask] / self.loss_config.kl_temperature,
|
| 238 |
dim=-1,
|
| 239 |
),
|
| 240 |
F.softmax(
|
| 241 |
+
alt_lm_output.logits[alt_eot_mask] / self.loss_config.kl_temperature,
|
|
|
|
| 242 |
dim=-1,
|
| 243 |
),
|
| 244 |
reduction="batchmean",
|
| 245 |
)
|
| 246 |
+
|
| 247 |
+
return {"loss": kl_loss + self.loss_config.eot_loss_weight * eot_loss}
|
| 248 |
|
| 249 |
def _audio_iter(
|
| 250 |
self, audio_batch_size: torch.Tensor
|
|
|
|
| 412 |
cls, config: UltravoxConfig
|
| 413 |
) -> "UltravoxProjector":
|
| 414 |
projector = UltravoxProjector(config)
|
| 415 |
+
dtype = config.torch_dtype
|
| 416 |
+
if isinstance(dtype, str):
|
| 417 |
+
dtype = getattr(torch, dtype)
|
| 418 |
+
projector.to(dtype)
|
| 419 |
return projector
|
| 420 |
|
| 421 |
@classmethod
|
| 422 |
def _create_audio_tower(
|
| 423 |
cls, config: UltravoxConfig
|
| 424 |
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
| 425 |
+
# We probably don't want to pass tp_plan or device_map to the audio tower
|
| 426 |
+
# But potentially other kwargs can be passed in. TODO
|
| 427 |
+
kwargs = {"torch_dtype": config.torch_dtype}
|
| 428 |
+
if (
|
| 429 |
+
transformers.modeling_utils._init_weights
|
| 430 |
+
and config.audio_model_id is not None
|
| 431 |
+
):
|
| 432 |
+
if "whisper" in config.audio_model_id.lower():
|
| 433 |
+
audio_tower = ModifiedWhisperEncoder.from_pretrained(
|
| 434 |
+
config.audio_model_id, **kwargs
|
| 435 |
+
)
|
| 436 |
audio_tower.init_latency_mask(
|
| 437 |
config.audio_latency_block_size, dtype=config.torch_dtype
|
| 438 |
)
|
|
|
|
| 441 |
None,
|
| 442 |
0,
|
| 443 |
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
| 444 |
+
audio_tower = transformers.AutoModel.from_pretrained(
|
| 445 |
+
config.audio_model_id, **kwargs
|
| 446 |
+
)
|
| 447 |
+
else:
|
| 448 |
+
with accelerate.init_empty_weights():
|
| 449 |
+
if "whisper" in config.audio_config._name_or_path.lower():
|
| 450 |
+
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
| 451 |
+
audio_tower.init_latency_mask(
|
| 452 |
+
config.audio_latency_block_size,
|
| 453 |
+
dtype=config.torch_dtype,
|
| 454 |
+
)
|
| 455 |
+
else:
|
| 456 |
+
assert config.audio_latency_block_size in (
|
| 457 |
+
None,
|
| 458 |
+
0,
|
| 459 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
| 460 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
| 461 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
| 462 |
+
audio_tower = transformers.AutoModel.from_config(
|
| 463 |
+
config.audio_config, **kwargs
|
| 464 |
+
)
|
| 465 |
|
| 466 |
if isinstance(
|
| 467 |
audio_tower,
|
|
|
|
| 479 |
def _create_language_model(
|
| 480 |
cls, config: UltravoxConfig
|
| 481 |
) -> transformers.LlamaForCausalLM:
|
| 482 |
+
if (
|
| 483 |
+
transformers.modeling_utils._init_weights
|
| 484 |
+
and config.text_model_id is not None
|
| 485 |
+
):
|
| 486 |
+
language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 487 |
+
config.text_model_id,
|
| 488 |
+
**{
|
| 489 |
+
"attn_implementation": config.text_config._attn_implementation,
|
| 490 |
+
"torch_dtype": config.torch_dtype,
|
| 491 |
+
**FROM_PRETRAINED_KWARGS,
|
| 492 |
+
},
|
| 493 |
)
|
| 494 |
+
else:
|
| 495 |
+
with accelerate.init_empty_weights():
|
| 496 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
| 497 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
| 498 |
+
language_model = transformers.AutoModelForCausalLM.from_config(
|
| 499 |
+
config.text_config,
|
| 500 |
+
attn_implementation=config.text_config._attn_implementation,
|
| 501 |
+
torch_dtype=config.torch_dtype,
|
| 502 |
+
)
|
| 503 |
|
| 504 |
language_model = apply_lora(language_model, config.text_model_lora_config)
|
| 505 |
return language_model
|
|
|
|
| 599 |
)
|
| 600 |
|
| 601 |
|
| 602 |
+
def get_checkpoint_files(
|
| 603 |
+
model_id: str,
|
| 604 |
+
) -> tuple[list[str], dict | None, list[str]]:
|
| 605 |
+
resolved_archive_file = transformers.utils.cached_file(
|
| 606 |
+
model_id,
|
| 607 |
+
transformers.utils.SAFE_WEIGHTS_NAME,
|
| 608 |
+
_raise_exceptions_for_missing_entries=False,
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
if resolved_archive_file is not None:
|
| 612 |
+
# not sharded
|
| 613 |
+
sharded_metadata = None
|
| 614 |
+
state_dict = transformers.modeling_utils.load_state_dict(resolved_archive_file)
|
| 615 |
+
loaded_state_dict_keys = list(state_dict.keys())
|
| 616 |
+
else:
|
| 617 |
+
# sharded
|
| 618 |
+
resolved_archive_file = transformers.utils.cached_file(
|
| 619 |
+
model_id, transformers.utils.SAFE_WEIGHTS_INDEX_NAME
|
| 620 |
+
)
|
| 621 |
+
resolved_archive_file, sharded_metadata = (
|
| 622 |
+
transformers.modeling_utils.get_checkpoint_shard_files(
|
| 623 |
+
model_id,
|
| 624 |
+
resolved_archive_file,
|
| 625 |
+
)
|
| 626 |
+
)
|
| 627 |
+
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
| 628 |
+
|
| 629 |
+
if isinstance(resolved_archive_file, str):
|
| 630 |
+
resolved_archive_file = [resolved_archive_file]
|
| 631 |
+
|
| 632 |
+
return resolved_archive_file, sharded_metadata, loaded_state_dict_keys
|
| 633 |
+
|
| 634 |
+
|
| 635 |
# TODO: refactor common parts to a shared module
|
| 636 |
def is_cache_empty(
|
| 637 |
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
|