--- license: mit datasets: - cheapresearch/CheapResearch-DS-33k --- # CheapResearch-4B-Thinking [![Model](https://img.shields.io/badge/HF-Model-blue)](https://huggingface.co/your-username/your-model-name) [![License](https://img.shields.io/badge/License-Apache--2.0-green)](#license) [![Dataset](https://img.shields.io/badge/Dataset-CheapResearch--DS--33k-orange)](https://huggingface.co/datasets/cheapresearch/CheapResearch-DS-33k) **A 4B-parameter Qwen model distilled from Tongyi DeepResearch-30B A3B**, optimized for web-scale “deep research” tasks and inference with **[Alibaba-NLP/DeepResearch](https://github.com/Alibaba-NLP/DeepResearch)**. * **Base**: Qwen 4B (dense) * **Teacher**: Tongyi DeepResearch 30B A3B (MoE) * **Method**: SFT distillation on **33k** curated deep-research examples * **Dataset**: [`cheapresearch/CheapResearch-DS-33k`](https://huggingface.co/datasets/cheapresearch/CheapResearch-DS-33k) * **Primary Use**: Fast, low-cost **DeepResearch** agent runs (browsing, multi-step reasoning, source-grounded answers) ## Evaluation ## Training Data * **Primary dataset**: [`cheapresearch/CheapResearch-DS-33k`](https://huggingface.co/datasets/cheapresearch/CheapResearch-DS-33k) ## Inference with Alibaba-NLP/DeepResearch (Recommended) This model is intended to be used **directly** with the DeepResearch repo. ### 1) Install & set up ```bash git clone https://github.com/Alibaba-NLP/DeepResearch cd DeepResearch # Create env (example) python -m venv .venv && source .venv/bin/activate pip install -e . # or pip install -r requirements.txt if provided ``` ### 2) Point DeepResearch to this model Edit the config to add this model ```bash MODEL_PATH=cheapresearch/CheapResearch-4B-Thinking ``` ### Hardware notes * **Single 12–16GB GPU** is enough for 4B FP16; FP8/INT4 quantization allows smaller VRAM. If you quantize, the summary model can be local as well. ## Acknowledgements * Qwen team for the base 4B architecture * Alibaba-NLP for **DeepResearch** * CheapResearch contributors for the 33k dataset --- ## Citation If you use this model, please cite: ```bibtex @software{cheapresearch_thinking_2025, title = {CheapResearch 4B Thinking}, author = {Artem Y.}, year = {2025}, url = {https://huggingface.co/cheapresearch/CheapResearch-4B-Thinking} } ``` And the dataset: ```bibtex @dataset{cheapresearch_ds_33k, title = {CheapResearch-DS-33k}, author = {Artem Y.}, year = {2025}, url = {https://huggingface.co/datasets/cheapresearch/CheapResearch-DS-33k} } ``` --- ## Changelog * **v1.0.0 (2025-10-04)** — First public release (33k distillation, DeepResearch-ready) ### Model Card Metadata (Hugging Face) ```yaml --- language: - en license: apache-2.0 library_name: transformers pipeline_tag: text-generation tags: - qwen - deep-research - browsing - citation - reasoning - distillation - agent - vllm - cheapresearch datasets: - cheapresearch/CheapResearch-DS-33k base_model: - Qwen/Qwen3-4B-Thinking-2507 model-index: - name: CheapResearch-4B-Thinking results: [] --- ```