--- base_model: lerobot/smolvla_base datasets: fracapuano/test_async_e2e library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla This `smolvla` policy is a ready-to-use example from the tutorial paper [Robot Learning: A Tutorial](https://huggingface.co/papers/2510.12403). **Project Page:** https://huggingface.co/spaces/lerobot/robot-learning-tutorial **Code:** https://github.com/fracapuano/robot-learning-tutorial [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/ \ --policy.type=act \ --output_dir=outputs/train/ \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/ --wandb.enable=true ``` *Writes checkpoints to `outputs/train//checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=/eval_ \ --policy.path=/ \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **Model License:** apache-2.0 * **Related Tutorial Paper:** [Robot Learning: A Tutorial](https://huggingface.co/papers/2510.12403) * **Tutorial Project Page:** https://huggingface.co/spaces/lerobot/robot-learning-tutorial * **Tutorial Code:** https://github.com/fracapuano/robot-learning-tutorial * **Tutorial Content License:** The written content of the tutorial is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-nc-sa/4.0/). * **Tutorial Code Examples License:** Source code examples in the tutorial's `snippets/` directory are licensed under the [MIT License](https://opensource.org/licenses/MIT).