Update README.md
Browse files
README.md
CHANGED
|
@@ -21,22 +21,22 @@ tags:
|
|
| 21 |
license: apache-2.0
|
| 22 |
pipeline_tag: image-classification
|
| 23 |
base_model:
|
| 24 |
-
- galeio-research/
|
| 25 |
---
|
| 26 |
|
| 27 |
-
# Model Card for
|
| 28 |
|
| 29 |
## Model Details
|
| 30 |
|
| 31 |
### Model Description
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
|
| 36 |
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
|
| 37 |
- **Model type:** Linear Regression Head on Vision Foundation Model
|
| 38 |
- **License:** Apache License 2.0
|
| 39 |
-
- **Base model:**
|
| 40 |
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
|
| 41 |
|
| 42 |
## Uses
|
|
@@ -69,7 +69,7 @@ import torch
|
|
| 69 |
from transformers import AutoModelForImageClassification
|
| 70 |
|
| 71 |
# Load the foundation model and the linear probing head
|
| 72 |
-
|
| 73 |
|
| 74 |
# Prepare your SAR image (should be single-channel VV polarization)
|
| 75 |
# Here using random data as example
|
|
@@ -77,7 +77,7 @@ dummy_image = torch.randn(1, 1, 256, 256) # (C, H, W)
|
|
| 77 |
|
| 78 |
# Extract features
|
| 79 |
with torch.no_grad():
|
| 80 |
-
outputs =
|
| 81 |
# For regression, use the single output value as the wave height prediction
|
| 82 |
wave_height = outputs.logits.item() # Output in meters
|
| 83 |
```
|
|
@@ -88,7 +88,7 @@ with torch.no_grad():
|
|
| 88 |
|
| 89 |
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
|
| 90 |
- **Source:** Wave height measurements from altimeters, buoys, and wave models
|
| 91 |
-
- **Preprocessing:** Same as base
|
| 92 |
|
| 93 |
## Evaluation
|
| 94 |
|
|
@@ -119,11 +119,11 @@ The model outperforms existing approaches:
|
|
| 119 |
|
| 120 |
- PyTorch >= 1.8.0
|
| 121 |
- Transformers >= 4.30.0
|
| 122 |
-
- Base
|
| 123 |
|
| 124 |
### Input Specifications
|
| 125 |
|
| 126 |
-
- Same as base
|
| 127 |
- Single channel (VV polarization) SAR images
|
| 128 |
- 256x256 pixel resolution
|
| 129 |
|
|
|
|
| 21 |
license: apache-2.0
|
| 22 |
pipeline_tag: image-classification
|
| 23 |
base_model:
|
| 24 |
+
- galeio-research/OceanSAR-1
|
| 25 |
---
|
| 26 |
|
| 27 |
+
# Model Card for OceanSAR-1-wave
|
| 28 |
|
| 29 |
## Model Details
|
| 30 |
|
| 31 |
### Model Description
|
| 32 |
|
| 33 |
+
OceanSAR-1-wave is a linear probing head for significant wave height (SWH) prediction built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately predict ocean wave heights from Synthetic Aperture Radar (SAR) imagery.
|
| 34 |
|
| 35 |
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
|
| 36 |
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
|
| 37 |
- **Model type:** Linear Regression Head on Vision Foundation Model
|
| 38 |
- **License:** Apache License 2.0
|
| 39 |
+
- **Base model:** OceanSAR-1 (ResNet50/ViT variants)
|
| 40 |
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
|
| 41 |
|
| 42 |
## Uses
|
|
|
|
| 69 |
from transformers import AutoModelForImageClassification
|
| 70 |
|
| 71 |
# Load the foundation model and the linear probing head
|
| 72 |
+
oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1")
|
| 73 |
|
| 74 |
# Prepare your SAR image (should be single-channel VV polarization)
|
| 75 |
# Here using random data as example
|
|
|
|
| 77 |
|
| 78 |
# Extract features
|
| 79 |
with torch.no_grad():
|
| 80 |
+
outputs = oceansar(dummy_image)
|
| 81 |
# For regression, use the single output value as the wave height prediction
|
| 82 |
wave_height = outputs.logits.item() # Output in meters
|
| 83 |
```
|
|
|
|
| 88 |
|
| 89 |
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements
|
| 90 |
- **Source:** Wave height measurements from altimeters, buoys, and wave models
|
| 91 |
+
- **Preprocessing:** Same as base OceanSAR-1 model
|
| 92 |
|
| 93 |
## Evaluation
|
| 94 |
|
|
|
|
| 119 |
|
| 120 |
- PyTorch >= 1.8.0
|
| 121 |
- Transformers >= 4.30.0
|
| 122 |
+
- Base OceanSAR-1 model
|
| 123 |
|
| 124 |
### Input Specifications
|
| 125 |
|
| 126 |
+
- Same as base OceanSAR-1 model
|
| 127 |
- Single channel (VV polarization) SAR images
|
| 128 |
- 256x256 pixel resolution
|
| 129 |
|