Update README.md
Browse files
README.md
CHANGED
|
@@ -1,40 +1,42 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
tags:
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
language:
|
| 10 |
-
|
| 11 |
datasets:
|
| 12 |
-
|
| 13 |
model-index:
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
---
|
| 39 |
|
| 40 |
# IndoBERT Emotion Classification (5-Class)
|
|
@@ -80,4 +82,4 @@ tokenizer = AutoTokenizer.from_pretrained("galennolan/indobert-b-p1-indoemotion-
|
|
| 80 |
|
| 81 |
emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 82 |
|
| 83 |
-
emotion_classifier("Produk ini bikin aku senang banget!")
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
tags:
|
| 4 |
+
- indobert
|
| 5 |
+
- emotion-classification
|
| 6 |
+
- text-classification
|
| 7 |
+
- indonesian
|
| 8 |
+
- torch
|
| 9 |
language:
|
| 10 |
+
- id
|
| 11 |
datasets:
|
| 12 |
+
- PRDECT-ID
|
| 13 |
model-index:
|
| 14 |
+
- name: IndoBERT Emotion Classification (5-Class)
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: text-classification
|
| 18 |
+
name: Emotion Classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: PRDECT-ID
|
| 21 |
+
type: text
|
| 22 |
+
description: >
|
| 23 |
+
A dataset of Indonesian product reviews labeled with five emotion
|
| 24 |
+
categories: love, happiness, anger, fear, and sadness.
|
| 25 |
+
metrics:
|
| 26 |
+
- name: Accuracy
|
| 27 |
+
type: accuracy
|
| 28 |
+
value: 0.7167
|
| 29 |
+
- name: F1 Score
|
| 30 |
+
type: f1
|
| 31 |
+
value: 0.7125
|
| 32 |
+
- name: Precision
|
| 33 |
+
type: precision
|
| 34 |
+
value: 0.7179
|
| 35 |
+
- name: Recall
|
| 36 |
+
type: recall
|
| 37 |
+
value: 0.7167
|
| 38 |
+
base_model:
|
| 39 |
+
- indobenchmark/indobert-base-p1
|
| 40 |
---
|
| 41 |
|
| 42 |
# IndoBERT Emotion Classification (5-Class)
|
|
|
|
| 82 |
|
| 83 |
emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 84 |
|
| 85 |
+
emotion_classifier("Produk ini bikin aku senang banget!")
|