galennolan commited on
Commit
63040f3
·
verified ·
1 Parent(s): 9ed19b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -32
README.md CHANGED
@@ -1,40 +1,42 @@
1
  ---
2
  license: mit
3
  tags:
4
- - indobert
5
- - emotion-classification
6
- - text-classification
7
- - indonesian
8
- - torch
9
  language:
10
- - id
11
  datasets:
12
- - PRDECT-ID
13
  model-index:
14
- - name: IndoBERT Emotion Classification (5-Class)
15
- results:
16
- - task:
17
- type: text-classification
18
- name: Emotion Classification
19
- dataset:
20
- name: PRDECT-ID
21
- type: text
22
- description: >
23
- A dataset of Indonesian product reviews labeled with five emotion categories:
24
- love, happiness, anger, fear, and sadness.
25
- metrics:
26
- - name: Accuracy
27
- type: accuracy
28
- value: 0.7167
29
- - name: F1 Score
30
- type: f1
31
- value: 0.7125
32
- - name: Precision
33
- type: precision
34
- value: 0.7179
35
- - name: Recall
36
- type: recall
37
- value: 0.7167
 
 
38
  ---
39
 
40
  # IndoBERT Emotion Classification (5-Class)
@@ -80,4 +82,4 @@ tokenizer = AutoTokenizer.from_pretrained("galennolan/indobert-b-p1-indoemotion-
80
 
81
  emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
82
 
83
- emotion_classifier("Produk ini bikin aku senang banget!")
 
1
  ---
2
  license: mit
3
  tags:
4
+ - indobert
5
+ - emotion-classification
6
+ - text-classification
7
+ - indonesian
8
+ - torch
9
  language:
10
+ - id
11
  datasets:
12
+ - PRDECT-ID
13
  model-index:
14
+ - name: IndoBERT Emotion Classification (5-Class)
15
+ results:
16
+ - task:
17
+ type: text-classification
18
+ name: Emotion Classification
19
+ dataset:
20
+ name: PRDECT-ID
21
+ type: text
22
+ description: >
23
+ A dataset of Indonesian product reviews labeled with five emotion
24
+ categories: love, happiness, anger, fear, and sadness.
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.7167
29
+ - name: F1 Score
30
+ type: f1
31
+ value: 0.7125
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.7179
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.7167
38
+ base_model:
39
+ - indobenchmark/indobert-base-p1
40
  ---
41
 
42
  # IndoBERT Emotion Classification (5-Class)
 
82
 
83
  emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
84
 
85
+ emotion_classifier("Produk ini bikin aku senang banget!")