gaotang commited on
Commit
a3763db
·
verified ·
1 Parent(s): ff6bcc3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
7
+ ---
8
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/654d784d71a30c4bca09a319/Q7MVJfIHDerQ24c1zwZwK.png)
9
+
10
+ <font size=3><div align='center' >
11
+ [[**🤗 Model & Dataset**](https://huggingface.co/collections/gaotang/rm-r1-681128cdab932701cad844c8)]
12
+ [[**📊 Code**](https://github.com/RM-R1-UIUC/RM-R1)]
13
+ [[**📖 Paper**](https://arxiv.org/abs/2505.02387)]
14
+ </div></font>
15
+
16
+ # 🚀 Can we cast reward modeling as a reasoning task?
17
+
18
+ **RM-R1** is a training framework for *Reasoning Reward Model* (ReasRM) that judges two candidate answers by first **thinking out loud**—generating rubrics or reasoning traces—then emitting its preference.
19
+ Compared with prior scalar or vanilla generative reward models, RM-R1 delivers up to **+13.8 % absolute accuracy gains** on public reward model benchmarks while providing *fully interpretable* critiques.
20
+
21
+ ## TL;DR
22
+ * **Two-stage training**
23
+ 1. **Distillation** of ~8.7 K high-quality reasoning traces (Chain-of-Rubrics).
24
+ 2. **Reinforcement Learning with Verifiable Rewards** (RLVR) on ~64 K preference pairs.
25
+
26
+ * **Backbones** released: 7 B / 14 B / 32 B Qwen-2.5-Instruct variants + DeepSeek-distilled checkpoints.
27
+
28
+ ## Intended uses
29
+ * **RLHF / RLAIF**: plug-and-play reward function for policy optimisation.
30
+ * **Automated evaluation**: LLM-as-a-judge for open-domain QA, chat, and reasoning.
31
+ * **Research**: study process supervision, chain-of-thought verification, or rubric generation.