--- license: mit language: - en base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/654d784d71a30c4bca09a319/Q7MVJfIHDerQ24c1zwZwK.png)
[[**🤗 Model & Dataset**](https://huggingface.co/collections/gaotang/rm-r1-681128cdab932701cad844c8)] [[**📊 Code**](https://github.com/RM-R1-UIUC/RM-R1)] [[**📖 Paper**](https://arxiv.org/abs/2505.02387)]
# 🚀 Can we cast reward modeling as a reasoning task? **RM-R1** is a training framework for *Reasoning Reward Model* (ReasRM) that judges two candidate answers by first **thinking out loud**—generating rubrics or reasoning traces—then emitting its preference. Compared with prior scalar or vanilla generative reward models, RM-R1 delivers up to **+13.8 % absolute accuracy gains** on public reward model benchmarks while providing *fully interpretable* critiques. ## TL;DR * **Two-stage training** 1. **Distillation** of ~8.7 K high-quality reasoning traces (Chain-of-Rubrics). 2. **Reinforcement Learning with Verifiable Rewards** (RLVR) on ~64 K preference pairs. * **Backbones** released: 7 B / 14 B / 32 B Qwen-2.5-Instruct variants + DeepSeek-distilled checkpoints. ## Intended uses * **RLHF / RLAIF**: plug-and-play reward function for policy optimisation. * **Automated evaluation**: LLM-as-a-judge for open-domain QA, chat, and reasoning. * **Research**: study process supervision, chain-of-thought verification, or rubric generation.