Commit
·
02f4eb3
1
Parent(s):
a7828dc
Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,164 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: transformers
|
| 6 |
+
inference: false
|
| 7 |
---
|
| 8 |
+
# h2oGPT Model Card
|
| 9 |
+
## Summary
|
| 10 |
+
|
| 11 |
+
H2O.ai's `h2ogpt-oasst1-512-12b` is a 12 billion parameter instruction-following large language model licensed for commercial use.
|
| 12 |
+
|
| 13 |
+
- Base model: EleutherAI/pythia-12b
|
| 14 |
+
- Fine-tuning dataset: [h2oai/openassistant_oasst1](https://huggingface.co/datasets/h2oai/openassistant_oasst1)
|
| 15 |
+
- Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
|
| 16 |
+
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/pythia-12b.openassistant_oasst1.json.1_epochs.d45a9d34d34534e076cc6797614b322bd0efb11c.15.zip)
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
pip install transformers==4.28.1
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
import torch
|
| 28 |
+
from transformers import pipeline
|
| 29 |
+
|
| 30 |
+
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
| 31 |
+
res = generate_text("Why is drinking water so healthy?")
|
| 32 |
+
print(res[0]["generated_text"])
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/h2oai_pipeline.py),
|
| 36 |
+
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
import torch
|
| 40 |
+
from h2oai_pipeline import H2OTextGenerationPipeline
|
| 41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", padding_side="left")
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", device_map="auto", torch_dtype=torch.bfloat16)
|
| 44 |
+
|
| 45 |
+
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### LangChain Usage
|
| 49 |
+
|
| 50 |
+
To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
|
| 51 |
+
and the default for the pipeline is to only return the new text.
|
| 52 |
+
|
| 53 |
+
```
|
| 54 |
+
import torch
|
| 55 |
+
from transformers import pipeline
|
| 56 |
+
|
| 57 |
+
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16,
|
| 58 |
+
trust_remote_code=True, device_map="auto", return_full_text=True)
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
You can create a prompt that either has only an instruction or has an instruction with context:
|
| 62 |
+
|
| 63 |
+
```
|
| 64 |
+
from langchain import PromptTemplate, LLMChain
|
| 65 |
+
from langchain.llms import HuggingFacePipeline
|
| 66 |
+
|
| 67 |
+
# template for an instrution with no input
|
| 68 |
+
prompt = PromptTemplate(
|
| 69 |
+
input_variables=["instruction"],
|
| 70 |
+
template="{instruction}")
|
| 71 |
+
|
| 72 |
+
# template for an instruction with input
|
| 73 |
+
prompt_with_context = PromptTemplate(
|
| 74 |
+
input_variables=["instruction", "context"],
|
| 75 |
+
template="{instruction}\n\nInput:\n{context}")
|
| 76 |
+
|
| 77 |
+
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
| 78 |
+
|
| 79 |
+
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
| 80 |
+
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
Example predicting using a simple instruction:
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
print(llm_chain.predict(instruction="Why is drinking water so healthy?").lstrip())
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Example predicting using an instruction with context:
|
| 90 |
+
|
| 91 |
+
```
|
| 92 |
+
context = """Model A: AUC=0.8
|
| 93 |
+
Model from Driverless AI: AUC=0.95
|
| 94 |
+
Model C: AUC=0.6
|
| 95 |
+
Model D: AUC=0.7
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
print(llm_context_chain.predict(instruction="Which model performs best?", context=context).lstrip())
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Model Architecture
|
| 102 |
+
|
| 103 |
+
```
|
| 104 |
+
GPTNeoXForCausalLM(
|
| 105 |
+
(gpt_neox): GPTNeoXModel(
|
| 106 |
+
(embed_in): Embedding(50688, 5120)
|
| 107 |
+
(layers): ModuleList(
|
| 108 |
+
(0-35): 36 x GPTNeoXLayer(
|
| 109 |
+
(input_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
|
| 110 |
+
(post_attention_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
|
| 111 |
+
(attention): GPTNeoXAttention(
|
| 112 |
+
(rotary_emb): RotaryEmbedding()
|
| 113 |
+
(query_key_value): Linear(in_features=5120, out_features=15360, bias=True)
|
| 114 |
+
(dense): Linear(in_features=5120, out_features=5120, bias=True)
|
| 115 |
+
)
|
| 116 |
+
(mlp): GPTNeoXMLP(
|
| 117 |
+
(dense_h_to_4h): Linear(in_features=5120, out_features=20480, bias=True)
|
| 118 |
+
(dense_4h_to_h): Linear(in_features=20480, out_features=5120, bias=True)
|
| 119 |
+
(act): GELUActivation()
|
| 120 |
+
)
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
(final_layer_norm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
|
| 124 |
+
)
|
| 125 |
+
(embed_out): Linear(in_features=5120, out_features=50688, bias=False)
|
| 126 |
+
)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
## Model Configuration
|
| 130 |
+
|
| 131 |
+
```
|
| 132 |
+
GPTNeoXConfig {
|
| 133 |
+
"_name_or_path": "h2oai/h2ogpt-oasst1-512-12b",
|
| 134 |
+
"architectures": [
|
| 135 |
+
"GPTNeoXForCausalLM"
|
| 136 |
+
],
|
| 137 |
+
"bos_token_id": 0,
|
| 138 |
+
"custom_pipelines": {
|
| 139 |
+
"text-generation": {
|
| 140 |
+
"impl": "h2oai_pipeline.H2OTextGenerationPipeline",
|
| 141 |
+
"pt": "AutoModelForCausalLM"
|
| 142 |
+
}
|
| 143 |
+
},
|
| 144 |
+
"eos_token_id": 0,
|
| 145 |
+
"hidden_act": "gelu",
|
| 146 |
+
"hidden_size": 5120,
|
| 147 |
+
"initializer_range": 0.02,
|
| 148 |
+
"intermediate_size": 20480,
|
| 149 |
+
"layer_norm_eps": 1e-05,
|
| 150 |
+
"max_position_embeddings": 2048,
|
| 151 |
+
"model_type": "gpt_neox",
|
| 152 |
+
"num_attention_heads": 40,
|
| 153 |
+
"num_hidden_layers": 36,
|
| 154 |
+
"rotary_emb_base": 10000,
|
| 155 |
+
"rotary_pct": 0.25,
|
| 156 |
+
"tie_word_embeddings": false,
|
| 157 |
+
"torch_dtype": "float16",
|
| 158 |
+
"transformers_version": "4.28.1",
|
| 159 |
+
"use_cache": true,
|
| 160 |
+
"use_parallel_residual": true,
|
| 161 |
+
"vocab_size": 50688
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
```
|