Update README.md
Browse files
README.md
CHANGED
|
@@ -26,8 +26,20 @@ An experimental version of IP-Adapter-FaceID: we use face ID embedding from a fa
|
|
| 26 |
|
| 27 |

|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
## Usage
|
| 30 |
|
|
|
|
|
|
|
| 31 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
| 32 |
|
| 33 |
```python
|
|
@@ -92,6 +104,75 @@ images = ip_model.generate(
|
|
| 92 |
|
| 93 |
```
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
## Limitations and Bias
|
| 97 |
- The model does not achieve perfect photorealism and ID consistency.
|
|
|
|
| 26 |
|
| 27 |

|
| 28 |
|
| 29 |
+
|
| 30 |
+
**Update 2023/12/27**:
|
| 31 |
+
|
| 32 |
+
IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
|
| 33 |
+
|
| 34 |
+
<div align="center">
|
| 35 |
+
|
| 36 |
+

|
| 37 |
+
</div>
|
| 38 |
+
|
| 39 |
## Usage
|
| 40 |
|
| 41 |
+
### IP-Adapter-FaceID
|
| 42 |
+
|
| 43 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
| 44 |
|
| 45 |
```python
|
|
|
|
| 104 |
|
| 105 |
```
|
| 106 |
|
| 107 |
+
### IP-Adapter-FaceID-Plus
|
| 108 |
+
|
| 109 |
+
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
|
| 113 |
+
import cv2
|
| 114 |
+
from insightface.app import FaceAnalysis
|
| 115 |
+
from insightface.utils import face_align
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 119 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 120 |
+
|
| 121 |
+
image = cv2.imread("person.jpg")
|
| 122 |
+
faces = app.get(image)
|
| 123 |
+
|
| 124 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 125 |
+
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
Then, you can generate images conditioned on the face embeddings:
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
+
|
| 132 |
+
import torch
|
| 133 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
| 134 |
+
from PIL import Image
|
| 135 |
+
|
| 136 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
| 137 |
+
|
| 138 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
| 139 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 140 |
+
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
|
| 141 |
+
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin"
|
| 142 |
+
device = "cuda"
|
| 143 |
+
|
| 144 |
+
noise_scheduler = DDIMScheduler(
|
| 145 |
+
num_train_timesteps=1000,
|
| 146 |
+
beta_start=0.00085,
|
| 147 |
+
beta_end=0.012,
|
| 148 |
+
beta_schedule="scaled_linear",
|
| 149 |
+
clip_sample=False,
|
| 150 |
+
set_alpha_to_one=False,
|
| 151 |
+
steps_offset=1,
|
| 152 |
+
)
|
| 153 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
| 154 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 155 |
+
base_model_path,
|
| 156 |
+
torch_dtype=torch.float16,
|
| 157 |
+
scheduler=noise_scheduler,
|
| 158 |
+
vae=vae,
|
| 159 |
+
feature_extractor=None,
|
| 160 |
+
safety_checker=None
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# load ip-adapter
|
| 164 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
|
| 165 |
+
|
| 166 |
+
# generate image
|
| 167 |
+
prompt = "photo of a woman in red dress in a garden"
|
| 168 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
| 169 |
+
|
| 170 |
+
images = ip_model.generate(
|
| 171 |
+
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
|
| 177 |
## Limitations and Bias
|
| 178 |
- The model does not achieve perfect photorealism and ID consistency.
|