Upload EncT5ForSequenceClassification
Browse files- README.md +3 -4
- config.json +1 -0
- configuration_enct5.py +3 -0
- model.safetensors +2 -2
- modeling_enct5.py +1 -1
README.md
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
language:
|
| 3 |
- en
|
| 4 |
- fr
|
| 5 |
- ro
|
| 6 |
- de
|
|
|
|
|
|
|
| 7 |
datasets:
|
| 8 |
- c4
|
| 9 |
-
library_name: transformers
|
| 10 |
-
|
| 11 |
-
license: apache-2.0
|
| 12 |
---
|
| 13 |
|
| 14 |
# Model Card for EncT5
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
- en
|
| 4 |
- fr
|
| 5 |
- ro
|
| 6 |
- de
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
library_name: transformers
|
| 9 |
datasets:
|
| 10 |
- c4
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Model Card for EncT5
|
config.json
CHANGED
|
@@ -59,6 +59,7 @@
|
|
| 59 |
"prefix": "translate English to Romanian: "
|
| 60 |
}
|
| 61 |
},
|
|
|
|
| 62 |
"torch_dtype": "float32",
|
| 63 |
"transformers_version": "4.37.1",
|
| 64 |
"use_cache": true,
|
|
|
|
| 59 |
"prefix": "translate English to Romanian: "
|
| 60 |
}
|
| 61 |
},
|
| 62 |
+
"tie_word_embeddings": false,
|
| 63 |
"torch_dtype": "float32",
|
| 64 |
"transformers_version": "4.37.1",
|
| 65 |
"use_cache": true,
|
configuration_enct5.py
CHANGED
|
@@ -131,3 +131,6 @@ class EncT5Config(PretrainedConfig):
|
|
| 131 |
is_encoder_decoder=is_encoder_decoder,
|
| 132 |
**kwargs,
|
| 133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
is_encoder_decoder=is_encoder_decoder,
|
| 132 |
**kwargs,
|
| 133 |
)
|
| 134 |
+
|
| 135 |
+
# Override the default behavior to tie word embeddings.
|
| 136 |
+
self.tie_word_embeddings = False
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e9cc0194fa5bfc256b2e2d47affe664f166cdaf29430947220e1606223691cc
|
| 3 |
+
size 476301088
|
modeling_enct5.py
CHANGED
|
@@ -93,7 +93,6 @@ class EncT5ForSequenceClassification(EncT5PreTrainedModel):
|
|
| 93 |
|
| 94 |
# Initiate decoder embedding from scratch and define the corresponding latent vector vocabulary size.
|
| 95 |
self.decoder_embeddings = nn.Embedding(config.decoder_vocab_size, config.d_model)
|
| 96 |
-
self.transformer.get_decoder().set_input_embeddings(self.decoder_embeddings)
|
| 97 |
|
| 98 |
# Initiate decoder projection head from scratch.
|
| 99 |
if config.problem_type == "multi_label_classification":
|
|
@@ -115,6 +114,7 @@ class EncT5ForSequenceClassification(EncT5PreTrainedModel):
|
|
| 115 |
Prepares the model for fine-tuning by re-initializing the necessary weights for fine-tuning. This step should be
|
| 116 |
performed after loading the pre-trained T5 model but before fine-tuning.
|
| 117 |
"""
|
|
|
|
| 118 |
self.transformer.get_decoder().apply(self._init_weights)
|
| 119 |
self._init_weights(self.classification_head)
|
| 120 |
|
|
|
|
| 93 |
|
| 94 |
# Initiate decoder embedding from scratch and define the corresponding latent vector vocabulary size.
|
| 95 |
self.decoder_embeddings = nn.Embedding(config.decoder_vocab_size, config.d_model)
|
|
|
|
| 96 |
|
| 97 |
# Initiate decoder projection head from scratch.
|
| 98 |
if config.problem_type == "multi_label_classification":
|
|
|
|
| 114 |
Prepares the model for fine-tuning by re-initializing the necessary weights for fine-tuning. This step should be
|
| 115 |
performed after loading the pre-trained T5 model but before fine-tuning.
|
| 116 |
"""
|
| 117 |
+
self.transformer.get_decoder().set_input_embeddings(self.decoder_embeddings)
|
| 118 |
self.transformer.get_decoder().apply(self._init_weights)
|
| 119 |
self._init_weights(self.classification_head)
|
| 120 |
|