File size: 26,488 Bytes
1255070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
#!/usr/bin/env python3
"""
Custom ViSoNorm model class for ViSoBERT-based models.
This preserves the custom heads needed for text normalization and
is loadable via auto_map without custom model_type.
"""
import math
import torch
import torch.nn as nn
from transformers import XLMRobertaModel, XLMRobertaConfig, XLMRobertaPreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput
# Define constants locally to avoid external dependencies
NUM_LABELS_N_MASKS = 5
def gelu(x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class XLMRobertaLMHead(nn.Module):
def __init__(self, config, xlmroberta_model_embedding_weights):
super().__init__()
# Use the actual hidden size from the pretrained model, not the config
actual_hidden_size = xlmroberta_model_embedding_weights.size(1)
self.dense = nn.Linear(actual_hidden_size, actual_hidden_size)
self.layer_norm = nn.LayerNorm(actual_hidden_size, eps=1e-12)
num_labels = xlmroberta_model_embedding_weights.size(0)
self.decoder = nn.Linear(actual_hidden_size, num_labels, bias=False)
self.decoder.weight = xlmroberta_model_embedding_weights
self.decoder.bias = nn.Parameter(torch.zeros(num_labels))
def forward(self, features):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
x = self.decoder(x)
return x
class XLMRobertaMaskNPredictionHead(nn.Module):
def __init__(self, config, actual_hidden_size):
super(XLMRobertaMaskNPredictionHead, self).__init__()
self.mask_predictor_dense = nn.Linear(actual_hidden_size, 50)
self.mask_predictor_proj = nn.Linear(50, NUM_LABELS_N_MASKS)
self.activation = gelu
def forward(self, sequence_output):
mask_predictor_state = self.activation(self.mask_predictor_dense(sequence_output))
prediction_scores = self.mask_predictor_proj(mask_predictor_state)
return prediction_scores
class XLMRobertaBinaryPredictor(nn.Module):
def __init__(self, hidden_size, dense_dim=100):
super(XLMRobertaBinaryPredictor, self).__init__()
self.dense = nn.Linear(hidden_size, dense_dim)
# Use 'predictor' to match the checkpoint parameter names
self.predictor = nn.Linear(dense_dim, 2)
self.activation = gelu
def forward(self, sequence_output):
state = self.activation(self.dense(sequence_output))
prediction_scores = self.predictor(state)
return prediction_scores
class ViSoNormViSoBERTForMaskedLM(XLMRobertaPreTrainedModel):
config_class = XLMRobertaConfig
def __init__(self, config: XLMRobertaConfig):
super().__init__(config)
self.roberta = XLMRobertaModel(config)
# Get actual hidden size from the pretrained model
actual_hidden_size = self.roberta.embeddings.word_embeddings.weight.size(1)
# ViSoNorm normalization head - use exact same structure as training
self.cls = XLMRobertaLMHead(config, self.roberta.embeddings.word_embeddings.weight)
# Additional heads for ViSoNorm functionality
self.mask_n_predictor = XLMRobertaMaskNPredictionHead(config, actual_hidden_size)
self.nsw_detector = XLMRobertaBinaryPredictor(actual_hidden_size, dense_dim=100)
self.num_labels_n_mask = NUM_LABELS_N_MASKS
# Initialize per HF conventions
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Calculate all three prediction heads
logits_norm = self.cls(sequence_output)
logits_n_masks_pred = self.mask_n_predictor(sequence_output)
logits_nsw_detection = self.nsw_detector(sequence_output)
if not return_dict:
return (logits_norm, logits_n_masks_pred, logits_nsw_detection) + outputs[1:]
# Return all prediction heads for ViSoNorm inference
# Create a custom output object that contains all three heads
class ViSoNormOutput:
def __init__(self, logits_norm, logits_n_masks_pred, logits_nsw_detection, hidden_states=None, attentions=None):
self.logits = logits_norm
self.logits_norm = logits_norm
self.logits_n_masks_pred = logits_n_masks_pred
self.logits_nsw_detection = logits_nsw_detection
self.hidden_states = hidden_states
self.attentions = attentions
return ViSoNormOutput(
logits_norm=logits_norm,
logits_n_masks_pred=logits_n_masks_pred,
logits_nsw_detection=logits_nsw_detection,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def normalize_text(self, tokenizer, text, device='cpu'):
"""
Normalize text using the ViSoNorm ViSoBERT model with proper NSW detection and masking.
Args:
tokenizer: HuggingFace tokenizer
text: Input text to normalize
device: Device to run inference on
Returns:
Tuple of (normalized_text, source_tokens, prediction_tokens)
"""
# Move model to device
self.to(device)
# Step 1: Preprocess text exactly like training data
# Tokenize the input text into tokens (not IDs yet)
input_tokens = tokenizer.tokenize(text)
# Add special tokens like in training
input_tokens = ['<s>'] + input_tokens + ['</s>']
# Convert tokens to IDs
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
input_tokens_tensor = torch.LongTensor([input_ids]).to(device)
# Step 2: Apply the same truncation and masking logic as training
input_tokens_tensor, _, token_type_ids, input_mask = self._truncate_and_build_masks(input_tokens_tensor)
# Step 3: Get all three prediction heads from ViSoNorm model
self.eval()
with torch.no_grad():
if hasattr(self, 'roberta'):
outputs = self(input_tokens_tensor, token_type_ids, input_mask)
else:
outputs = self(input_tokens_tensor, input_mask)
# Step 4: Use NSW detector to identify tokens that need normalization
tokens = tokenizer.convert_ids_to_tokens(input_tokens_tensor[0])
if hasattr(outputs, 'logits_nsw_detection') and outputs.logits_nsw_detection is not None:
# Handle different output shapes
if outputs.logits_nsw_detection.dim() == 3: # (batch, seq_len, 2) - binary classification
nsw_predictions = torch.argmax(outputs.logits_nsw_detection[0], dim=-1) == 1
else: # (batch, seq_len) - single output
nsw_predictions = torch.sigmoid(outputs.logits_nsw_detection[0]) > 0.5
tokens_need_norm = []
for i, token in enumerate(tokens):
# Skip special tokens
if token in ['<s>', '</s>', '<pad>', '<unk>', '<mask>']:
tokens_need_norm.append(False)
else:
if i < len(nsw_predictions):
tokens_need_norm.append(nsw_predictions[i].item())
else:
tokens_need_norm.append(False)
else:
# Fallback: assume all non-special tokens need checking
tokens_need_norm = [token not in ['<s>', '</s>', '<pad>', '<unk>', '<mask>'] for token in tokens]
# Update NSW tokens list (purely model-driven or generic non-special fallback)
nsw_tokens = [tokens[i] for i, need in enumerate(tokens_need_norm) if need]
# Step 5: Greedy 0/1-mask selection when heads are unusable
# Try, per NSW position, whether adding one mask improves sequence likelihood
def _score_sequence(input_ids_tensor: torch.Tensor) -> float:
with torch.no_grad():
scored = self(input_ids=input_ids_tensor, attention_mask=torch.ones_like(input_ids_tensor))
logits = scored.logits_norm if hasattr(scored, 'logits_norm') else scored.logits
log_probs = torch.log_softmax(logits[0], dim=-1)
# Score by taking the max log-prob at each position (approximate sequence likelihood)
position_scores, _ = torch.max(log_probs, dim=-1)
return float(position_scores.mean().item())
mask_token_id = tokenizer.convert_tokens_to_ids('<mask>')
working_ids = input_tokens_tensor[0].detach().clone().cpu().tolist()
nsw_indices = [i for i, need in enumerate(tokens_need_norm) if need]
offset = 0
for i in nsw_indices:
pos = i + offset
# Candidate A: no mask
cand_a = working_ids
score_a = _score_sequence(torch.tensor([cand_a], device=device))
# Candidate B: add one mask after pos
cand_b = working_ids[:pos+1] + [mask_token_id] + working_ids[pos+1:]
score_b = _score_sequence(torch.tensor([cand_b], device=device))
if score_b > score_a:
working_ids = cand_b
offset += 1
# Final prediction on the chosen masked sequence (may be unchanged)
masked_input_ids = torch.tensor([working_ids], device=device)
with torch.no_grad():
final_outputs = self(input_ids=masked_input_ids, attention_mask=torch.ones_like(masked_input_ids))
logits_final = final_outputs.logits_norm if hasattr(final_outputs, 'logits_norm') else final_outputs.logits
pred_ids = torch.argmax(logits_final, dim=-1)[0].cpu().tolist()
# Build final token ids by taking predictions at positions; keep originals at specials
final_tokens = []
for idx, src_id in enumerate(working_ids):
tok = tokenizer.convert_ids_to_tokens([src_id])[0]
if tok in ['<s>', '</s>', '<pad>', '<unk>']:
final_tokens.append(src_id)
else:
final_tokens.append(pred_ids[idx] if idx < len(pred_ids) else src_id)
# Step 9: Convert to final text
def remove_special_tokens(token_list):
special_tokens = ['<s>', '</s>', '<pad>', '<unk>', '<mask>', '<space>']
return [token for token in token_list if token not in special_tokens]
def _safe_ids_to_text(token_ids):
if not token_ids:
return ""
try:
tokens = tokenizer.convert_ids_to_tokens(token_ids)
cleaned = remove_special_tokens(tokens)
if not cleaned:
return ""
return tokenizer.convert_tokens_to_string(cleaned)
except Exception:
return ""
# Build final normalized text
final_tokens = [tid for tid in final_tokens if tid != -1]
pred_str = _safe_ids_to_text(final_tokens)
# Collapse repeated whitespace
if pred_str:
pred_str = ' '.join(pred_str.split())
# Also return token lists for optional inspection
decoded_source = tokenizer.convert_ids_to_tokens(working_ids)
decoded_pred = tokenizer.convert_ids_to_tokens(final_tokens)
return pred_str, decoded_source, decoded_pred
def detect_nsw(self, tokenizer, text, device='cpu'):
"""
Detect Non-Standard Words (NSW) in text and return detailed information.
This method aligns with normalize_text to ensure consistent NSW detection.
Args:
tokenizer: HuggingFace tokenizer
text: Input text to analyze
device: Device to run inference on
Returns:
List of dictionaries containing NSW information:
[{'index': int, 'start_index': int, 'end_index': int, 'nsw': str,
'prediction': str, 'confidence_score': float}, ...]
"""
# Move model to device
self.to(device)
# Step 1: Preprocess text exactly like normalize_text
input_tokens = tokenizer.tokenize(text)
input_tokens = ['<s>'] + input_tokens + ['</s>']
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
input_tokens_tensor = torch.LongTensor([input_ids]).to(device)
# Step 2: Apply the same truncation and masking logic as normalize_text
input_tokens_tensor, _, token_type_ids, input_mask = self._truncate_and_build_masks(input_tokens_tensor)
# Step 3: Get all three prediction heads from ViSoNorm model (same as normalize_text)
self.eval()
with torch.no_grad():
if hasattr(self, 'roberta'):
outputs = self(input_tokens_tensor, token_type_ids, input_mask)
else:
outputs = self(input_tokens_tensor, input_mask)
# Step 4: Use NSW detector to identify tokens that need normalization (same logic as normalize_text)
tokens = tokenizer.convert_ids_to_tokens(input_tokens_tensor[0])
if hasattr(outputs, 'logits_nsw_detection') and outputs.logits_nsw_detection is not None:
# Handle different output shapes (same as normalize_text)
if outputs.logits_nsw_detection.dim() == 3: # (batch, seq_len, 2) - binary classification
nsw_predictions = torch.argmax(outputs.logits_nsw_detection[0], dim=-1) == 1
nsw_confidence = torch.softmax(outputs.logits_nsw_detection[0], dim=-1)[:, 1]
else: # (batch, seq_len) - single output
nsw_predictions = torch.sigmoid(outputs.logits_nsw_detection[0]) > 0.5
nsw_confidence = torch.sigmoid(outputs.logits_nsw_detection[0])
tokens_need_norm = []
for i, token in enumerate(tokens):
# Skip special tokens (same as normalize_text)
if token in ['<s>', '</s>', '<pad>', '<unk>', '<mask>']:
tokens_need_norm.append(False)
else:
if i < len(nsw_predictions):
tokens_need_norm.append(nsw_predictions[i].item())
else:
tokens_need_norm.append(False)
else:
# Fallback: assume all non-special tokens need checking (same as normalize_text)
tokens_need_norm = [token not in ['<s>', '</s>', '<pad>', '<unk>', '<mask>'] for token in tokens]
# Step 5: Apply the same masking strategy as normalize_text
def _score_sequence(input_ids_tensor: torch.Tensor) -> float:
with torch.no_grad():
scored = self(input_ids=input_ids_tensor, attention_mask=torch.ones_like(input_ids_tensor))
logits = scored.logits_norm if hasattr(scored, 'logits_norm') else scored.logits
log_probs = torch.log_softmax(logits[0], dim=-1)
position_scores, _ = torch.max(log_probs, dim=-1)
return float(position_scores.mean().item())
mask_token_id = tokenizer.convert_tokens_to_ids('<mask>')
working_ids = input_tokens_tensor[0].detach().clone().cpu().tolist()
nsw_indices = [i for i, need in enumerate(tokens_need_norm) if need]
offset = 0
for i in nsw_indices:
pos = i + offset
# Candidate A: no mask
cand_a = working_ids
score_a = _score_sequence(torch.tensor([cand_a], device=device))
# Candidate B: add one mask after pos
cand_b = working_ids[:pos+1] + [mask_token_id] + working_ids[pos+1:]
score_b = _score_sequence(torch.tensor([cand_b], device=device))
if score_b > score_a:
working_ids = cand_b
offset += 1
# Step 6: Get final predictions using the same masked sequence as normalize_text
masked_input_ids = torch.tensor([working_ids], device=device)
with torch.no_grad():
final_outputs = self(input_ids=masked_input_ids, attention_mask=torch.ones_like(masked_input_ids))
logits_final = final_outputs.logits_norm if hasattr(final_outputs, 'logits_norm') else final_outputs.logits
pred_ids = torch.argmax(logits_final, dim=-1)[0].cpu().tolist()
# Step 7: Build results using the same logic as normalize_text
# We need to identify NSW tokens by comparing original vs predicted tokens
# This ensures we catch all tokens that were actually changed, not just those detected by NSW head
nsw_results = []
# Build final token ids by taking predictions at positions; keep originals at specials (same as normalize_text)
final_tokens = []
for idx, src_id in enumerate(working_ids):
tok = tokenizer.convert_ids_to_tokens([src_id])[0]
if tok in ['<s>', '</s>', '<pad>', '<unk>']:
final_tokens.append(src_id)
else:
final_tokens.append(pred_ids[idx] if idx < len(pred_ids) else src_id)
# Convert final tokens to normalized text (same as normalize_text)
def remove_special_tokens(token_list):
special_tokens = ['<s>', '</s>', '<pad>', '<unk>', '<mask>', '<space>']
return [token for token in token_list if token not in special_tokens]
def _safe_ids_to_text(token_ids):
if not token_ids:
return ""
try:
tokens = tokenizer.convert_ids_to_tokens(token_ids)
cleaned = remove_special_tokens(tokens)
if not cleaned:
return ""
return tokenizer.convert_tokens_to_string(cleaned)
except Exception:
return ""
# Build final normalized text
final_tokens_cleaned = [tid for tid in final_tokens if tid != -1]
normalized_text = _safe_ids_to_text(final_tokens_cleaned)
# Collapse repeated whitespace
if normalized_text:
normalized_text = ' '.join(normalized_text.split())
# Now compare original text tokens with normalized text tokens
original_tokens = tokenizer.tokenize(text)
normalized_tokens = tokenizer.tokenize(normalized_text)
# Use a smarter approach that can handle multi-token expansions
# Get the source and predicted tokens from the model
decoded_source = tokenizer.convert_ids_to_tokens(working_ids)
decoded_pred = tokenizer.convert_ids_to_tokens(final_tokens)
# Clean the tokens (remove special tokens and ▁ prefix)
def clean_token(token):
if token in ['<s>', '</s>', '<pad>', '<unk>', '<mask>']:
return None
return token.strip().lstrip('▁')
# Group consecutive predictions that form expansions
i = 0
while i < len(decoded_source):
src_token = decoded_source[i]
clean_src = clean_token(src_token)
if clean_src is None:
i += 1
continue
# Check if this token was changed
pred_token = decoded_pred[i]
clean_pred = clean_token(pred_token)
if clean_pred is None:
i += 1
continue
if clean_src != clean_pred:
# This is an NSW token - check if it's part of an expansion
expansion_tokens = [clean_pred]
j = i + 1
# Look for consecutive mask tokens that were filled
while j < len(decoded_source) and j < len(decoded_pred):
next_src = decoded_source[j]
next_pred = decoded_pred[j]
# If the source is a mask token, it was added for expansion
if next_src == '<mask>':
clean_next_pred = clean_token(next_pred)
if clean_next_pred is not None:
expansion_tokens.append(clean_next_pred)
j += 1
else:
# Check if the next source token was also changed
clean_next_src = clean_token(next_src)
clean_next_pred = clean_token(next_pred)
if clean_next_src is not None and clean_next_pred is not None and clean_next_src != clean_next_pred:
# This is also a changed token, might be part of expansion
# But we need to be careful not to group unrelated changes
# For now, let's be conservative and only group mask-based expansions
break
else:
break
# Create the expansion text
expansion_text = ' '.join(expansion_tokens)
# This is an NSW token
start_idx = text.find(clean_src)
end_idx = start_idx + len(clean_src) if start_idx != -1 else len(clean_src)
# Calculate confidence score
if hasattr(outputs, 'logits_nsw_detection') and outputs.logits_nsw_detection is not None:
# Find the corresponding position in the original token list
orig_pos = None
for k, tok in enumerate(tokens):
if tok.strip().lstrip('▁') == clean_src:
orig_pos = k
break
if orig_pos is not None and orig_pos < len(nsw_confidence):
if outputs.logits_nsw_detection.dim() == 3:
nsw_conf = nsw_confidence[orig_pos].item()
else:
nsw_conf = nsw_confidence[orig_pos].item()
else:
nsw_conf = 0.5 # Default if position not found
# Get normalization confidence
norm_logits = logits_final[0] # Use final masked logits
norm_confidence = torch.softmax(norm_logits, dim=-1)
norm_conf = norm_confidence[i][final_tokens[i]].item()
combined_confidence = (nsw_conf + norm_conf) / 2
else:
combined_confidence = 0.5 # Default confidence if no NSW detector
nsw_results.append({
'index': i,
'start_index': start_idx,
'end_index': end_idx,
'nsw': clean_src,
'prediction': expansion_text,
'confidence_score': round(combined_confidence, 4)
})
# Move to the next unprocessed token
i = j
else:
i += 1
return nsw_results
def _truncate_and_build_masks(self, input_tokens_tensor, output_tokens_tensor=None):
"""Apply the same truncation and masking logic as training."""
if hasattr(self, 'roberta'):
cfg_max = int(getattr(self.roberta.config, 'max_position_embeddings', input_tokens_tensor.size(1)))
tbl_max = int(getattr(self.roberta.embeddings.position_embeddings, 'num_embeddings', cfg_max))
max_pos = min(cfg_max, tbl_max)
eff_max = max(1, max_pos - 2)
if input_tokens_tensor.size(1) > eff_max:
input_tokens_tensor = input_tokens_tensor[:, :eff_max]
if output_tokens_tensor is not None and output_tokens_tensor.dim() == 2 and output_tokens_tensor.size(1) > eff_max:
output_tokens_tensor = output_tokens_tensor[:, :eff_max]
pad_id_model = getattr(self.roberta.config, 'pad_token_id', None)
if pad_id_model is None:
pad_id_model = getattr(self.roberta.embeddings.word_embeddings, 'padding_idx', None)
if pad_id_model is None:
pad_id_model = 1 # Default pad token ID
input_mask = (input_tokens_tensor != pad_id_model).long()
token_type_ids = torch.zeros_like(input_tokens_tensor)
return input_tokens_tensor, output_tokens_tensor, token_type_ids, input_mask
# bart branch
pad_id_model = 1
input_mask = torch.ones_like(input_tokens_tensor)
token_type_ids = None
return input_tokens_tensor, output_tokens_tensor, token_type_ids, input_mask
__all__ = ["ViSoNormViSoBERTForMaskedLM"]
|